377 research outputs found

    On a generalized notion of metrics

    Full text link
    In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo) n-metric which assigns a value to a tuple of n points. We present two principles of constructing pseudo n-metrics. The first one uses the Vandermonde determinant while the second one uses exterior products and is related to the volume of the simplex spanned by the given points. We show that the second class of examples induces pseudo n-metrics on the unit sphere of a Hilbert space and on matrix manifolds such as the Stiefel and the Grassmann manifold. Further, we construct a pseudo n-metric on hypergraphs and discuss the problem of generalizing the Hausdorff metric for closed sets to a pseudo n-metric

    Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems

    Get PDF
    Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. The viability of our continuation procedure is illustrated by a numerical exampl

    Perturbation, extraction and refinement of invariant pairs for matrix polynomials

    Get PDF
    Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures

    Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs

    Get PDF
    The paper provides full algorithmic details on switching to the continuation of all possible codim 1 cycle bifurcations from generic codim 2 equilibrium bifurcation points in n-dimensional ODEs. We discuss the implementation and the performance of the algorithm in several examples, including an extended Lorenz-84 model and a laser system.Comment: 17 pages, 7 figures, submitted to Physica

    Verzweigung in einem Finite-Elemente Modell für das hydrostatische Skelett

    Get PDF
    Beyn W-J, Wadepuhl M. Verzweigung in einem Finite-Elemente Modell für das hydrostatische Skelett. Zeitschrift für angewandte Mathematik und Mechanik. 1990;70(4):T272-T274

    Existence and stability of viscoelastic shock profiles

    Full text link
    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic--parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure

    Computation and Stability of TravelingWaves in Second Order Evolution Equations

    Get PDF
    The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becomes stationary. In addition it generates an algebraic variable which converges to the speed of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear stability results for waves in first order hyperbolic systems. Numerical computations illustrate the theory for examples of Nagumo and FitzHugh-Nagumo type
    corecore