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Abstract

Background: The glucose effect is a well known phenomenon whereby cells, when presented with two different
nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced
growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to
maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has
been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to
increase overall growth has remained an unconfirmed conjecture.

Methods: Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism.
We subject this model to artificial evolution to test under which conditions diauxic growth evolves.

Results: As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients
and the metabolism/uptake system is capacity limited.

Discussion: However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of
nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction
of efficiency.

Conclusions: Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient
growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the
lag-phase is a consequence of stochastic gene expression.

Keywords: Diauxic growth, Glucose effect, Simulated evolution

Background
Diauxic growth is perhaps one of the best known bio-
logical phenomena. Its discovery goes back to Monod [1]
who found that on a mix of glucose and lactose E.coli
first grows exponentially on the preferred nutrient (i.e.
glucose), then stops growing and then resumes, somewhat
slower, exponential growth fuelled by the less preferred
nutrient. The phase in-between the exponential growth
episodes is called the lag-phase. Diauxic growth and the
network that controls it has been subject to intense experi-
mental [2–8] and theoretical [5, 9–11] investigation. Most
of this work has focussed on understanding the detailed
mechanisms controlling diauxie.
There are two main mechanisms responsible for the

two phase growth in bacteria, both of which depend on
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the phototransferase (PTS) system [12]. Firstly, regula-
tion of metabolic genes via global transcription regula-
tors, especially cAMP. Secondly, direct uptake mediated
inducer exclusion. In E.coli the levels of dephospho EIIAGlc

increase during glucose uptake. EIIAGlc inactivates the
uptake of the secondary sugars (i.e. lactose) and in this way
prevents the induction of the relevant uptake system.
Given the complex regulatory interactions that imple-

ment diauxic growth one is led to assume that it has some
adaptive significance, i.e. it is not simply an evolutionary
frozen accident. It is commonly conjectured that diauxic
growth enables cells “to increase their fitness by optimiz-
ing growth rates in natural environments providing com-
plex mixtures of nutrients” [2]. Yet precisely under which
condition two phase growth is adaptive is usually left
unspecified. Similarly, it is rarely discussed in detail why
and when the lag-phase is adaptive: In Monod’s original
experiments it lasts for about 20 minutes which is of the
order of magnitude of a typical generation time in expo-
nentially growing E.coli. Halting growth for such a long
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period of time comes with a substantial fitness penalty. It
is not clear how this growth cost can be counter-balanced
by other effects.
One hypothesis is that the lag-phase is simply an

unavoidable consequence of the switch between nutrient
sources. Yet, this does not explain the lag-phase itself.
For one, one could image that cells start to switch to
the second nutrient before the first nutrient is completely
exhausted. There would be a short period of simultaneous
uptake of nutrient and an immediate uptake of the second
nutrient with no cessation of growth. Furthermore, there
is also emerging new experimental evidence [8] that the
lag-phase is under evolutionary control and is linked to
stochastic effects of gene expression. If found confirmed,
this would suggest that the lag-phase is not explainable
by deterministic population level models but perhaps
requires explanatory approaches based on the metabolic
cost of rapid state changes in stochastic computers [13].
Uptake and metabolism of nutrient is not free, but

requires a specific uptake machinery to be produced and
hence comes at an energetic cost. Uptake withdraws nutri-
ent from general growth and cell division; the faster the
uptake the higher the cost. This poses the question as to
what the best allocation strategy might be: if the cell chan-
nelled all nutrients into growth, but used none for uptake,
then it would starve in an ocean of nutrient. Similarly, if
all nutrients were to be committed to uptake but none to
growth, then the cell would not be able to grow either. This
suggests the existence of a sweet-spot balancing uptake
and growth. Indeed, for the case of the lac operon this
optimum was shown to exist in artificial wet-lab evolu-
tion [14, 15]. In the case of non-constant environments,
including environments with two nutrients, there is then
no longer a single optimum but an optimal trajectory
of states. The question then arises what the best way of
switching between different states [16] depending on the
statistical properties of the environment [17].
While stochastic effects most likely have a role to play

for the evolution of diauxic growth, we argue here that
it is not the main effect. Instead, resource allocation is
a primary driver of diauxic growth: it is not possible to
understand how much energy the cell should expend on
stochastic regulation without understanding the overall
principles of resource allocation; vice-versa, it is possi-
ble to establish how the cell should best allocate resource
without knowing the specifics of the costs of stochas-
tic gene regulation. Furthermore, the mathematics of
stochastic gene regulation is difficult and simulations are
computationally expensive despite recent progress in the
field [18, 19].
In order to understand resource allocation in cells (and

hence diauxic growth), we present here a model of nutri-
ent uptake and metabolism that is based on the PTS sys-
tem and as such captures the essential aspects of nutrient

uptake in bacteria. We only specify the topology of the
network (i.e. which proteins interact, which pathways
exist) and use artificial evolution to obtain the parameters
for the model. Each of the evolved parameter sets can be
interpreted as a resource allocation strategy. Crucial for
our conclusions is that the artificial evolution algorithm
we use implements competition for shared resources.
Such competition is essential for the understanding of
diauxic growth.
We will find that diauxic growth, or more precisely

sequential nutrient uptake does evolve but only when
the cell is under competitive pressure. At the same time,
competitive pressure is only a necessary condition for
sequential uptake to evolve, not a sufficient one. Diauxic
growth will only evolve when the capacity of the uptake
system or metabolism is strictly limited, for example if
there is limited space for porins on the cell surface. More
importantly, our artificial evolution simulations show that
sequential uptake is only a secondary adaptation to com-
petition in a dual nutrient environment. The primary
effect is a speed up of the nutrient uptake and metabolism
of the cell. At least within our set-up, this speed-up is the
main contributor to the fitness of the cell in a competitive
environment.
Interestingly, the increase of the uptake speed over evo-

lutionary time-scale leads to an overall decrease of the cell
efficiency. The fast growth forces the cell from the opti-
mal resource allocation. Altogether, competitive evolution
therefore leads to less efficient cells. Yet, while wasting
nutrients, these faster growing cells are more competitive
than their more efficient variations.

Results
The basic model
Throughout this contribution we will use a fixed network
topology implementing a simplified model of inducer
exclusion based on the PTS system (see reaction scheme
Fig. 1 and Table 1). There are two nutrients on offer,
one of which affords a higher growth to the cell. These
external nutrients are converted into some internal cel-
lular resource/energy (“ATP”) that can then itself be
converted into biomass (and hence growth). Crucially,
internal energy is also required for gene expression and
hence for the generation of the uptake machinery. This
entails that there is an inherent trade-off between the
amount of nutrient invested in growth and the amount of
nutrient used for the uptake machinery.
The network topology of the model allows for repres-

sion of uptake of the inferior model by a repressor that
directly binds to the specific porins thus disabling them.
The amount of repressor produced is proportional to the
uptake of the primary nutrient. Furthermore, the repres-
sor also directly represses expression of the porin for the
inferior nutrient. Thesemechanisms reflect in a simplified
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Fig. 1 Graphical representation of the topology of the model. To maintain clarity of the diagram, the breakdown reactions R.VII are not represented.
Moreover, the repression mechanism of reactions R.V and R.VI involving the formation of B2 from permease and repressor is only indicated by a
repressor symbol

form the dual repression in the PTS system of E.coli,
described above.
The network, as expressed by equivalent chemical reac-

tions is described in Table 1; a full set of differential
equations including the relevant Maple 17 files can be
obtained on request from the author. The reaction system
assumes two sources of nutrients N1 and N2, where we
assume that N1 is the more valuable one. Uptake of these
sources of nutrients requires specific porins, namely P1
and P2 respectively (R.I). Once taken up into the cell the

nutrient becomes an internal source of energy (E1 and E2)
which can be converted into actual energy; this happens in
reaction R.II. We denote the internal energy by E0. Within
the cell E0 is converted either into porins (P1, P2) (in reac-
tions R.III and R.IV respectively) or into biomass (bm) (in
R.VIII).
The expression of porins in R.III and R.IV is activated by

the presence of the respective nutrients inside the cell (E1
and E2). As such nutrient uptake is auto-activating which
is a commonly observed regulatory motif in bacterial

Table 1 The network topology formulated as a system of chemical equations. Note that R2 = ∅ and is not represented in the actual
model but merely introduced here for ease of notation. The factor L is defined in Eq. 1. The symbols pi represent the gene from which
the porins are transcribed. The factorH := E20/(0.001

2 + E20) denotes a Hill function; it prevents gene expression when there is no
internal energy in the cell. In all experiments reported here d{Pi ,Ei} were set proportional to the growth rate, i.e. the reaction rate of R.VIII,
while dR is an evolvable parameter acting on a much faster time-scale

Substrate Product Reaction rate Reaction number

Ni Ei + Ri kNi
Ni

Ni+KNi
Pi bm R.I

Ei E0 kEi Ei R.II

p1 + E0 p1 + P1

(
leak1 + kP1

EH1
EH1 +KHP1

E0

)
L bmH R.III

p2 + E0 p2 + P2

(
leak2 + kP2

EH2
EH2 +KHP2

KHR
RH+KHR

E0

)
L bmH R.IV

R1 + P2 B2 kb R1P2 R.V

B2 R1 + P2 kubB2 R.VI

{Pi , Ei , R1} ∅ d{Pi ,Ei ,R1} R.VII

E0 bm g bm E0
E0+Kg

R.VIII
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metabolic genes [20]. We assume that the activation func-
tion is of a Hill-type [21] with the fixed Hill exponent
H = 2, the evolvable Hill constantK, andmaximal expres-
sion rates kP1 and kP2 for P1 and P2 respectively. The
Hill constant determines how much internal nutrient is
required to switch the system on and the maximal uptake
rate determines how fast external nutrient is taken up
when the system is switched on. In addition to a regu-
lated activation of the uptake system, we also allow the
cell to evolve a constitutive leak expression of the expres-
sion apparatus, i.e. parameters leak1 and leak2. Growth
is represented by reaction R.VIII where internal energy is
converted into biomass bm.
A component of central importance is the regulator R.

Uptake of N1 in R.I coincides with the dephosphoryla-
tion of Rp thus producing the regulator R. The dephos-
phorylated regulator R is then either phosphorylated
again with a rate dR (R.VII) or binds to the specific
porin of the second nutrient N2 with a rate constant
of kb (reaction R.V) to form the inactive compound B2;
thus R inactivates P2. The porin-regulator compound
B2 dissociates with a rate of kub (R.VI). Note that the
phosphorylated version Rp is not explicitly represented
in the model and assumed to be available in constant
concentration.
The model assumes an exponential growth dynamics,

whereby the rates of nutrient uptake, porin production
and growth are proportional to the available biomass.
This entails that biomass is conceptually best interpreted
as biomass across a population rather than the mass of
an individual cell. As such, it denotes a measure of the
population size. The fact that nutrient uptake and porin
production are also proportional to biomass implies that
the volume of individual cells is considered constant. This
simplifying assumption was made for reasons of model
parsimony.
It can be shown (see Appendix A) that under certain

circumstances, the regulation of N2 is bi-stable and the
uptake/metabolism of N2 is on or off depending on the
uptake rate of N1. In this regime the system can realise
sequential uptake of the two nutrient sources. At the same
time, there are parametrisations of the network that lead
to simultaneous uptake of nutrients.
Below it will turn out that the space limitation in the

model will become crucial to the understanding of the
model. The factor L which appears in reactions R.III and
R.IV is the space-limit which represents the fact that
the surface of cells can accommodate a finite number of
porins only.

L = KL
P1 + P2 + KL

(1)

It represents the capacity of the cell to incorporate
porins on its surface, averaged over a life-cycle and the

population. The porin limitation mechanism does not
represent a specific biological feed-back mechanism, but
merely implements a general limitation scenario of the
metabolism. Within the current model, this could have
been implemented differently, with the same result. While
the surface area for porins is most certainly limited in
real cells it is unclear whether or not this is the dominant
limitation scenario for cells, or whether there are others.
Throughout this contributions we use a system of dif-

ferential equations to encode the model. We numerically
integrate the system using the Maple 17 standard ODE
solver.

Understanding the parameter space of the model
Insight into the nature of the parameter space is pro-
vided by varying the growth rate constant g that controls
the amount of resource that is used for growth (R.VIII).
Figure 2 shows the fitness of an evolved solution as a
function of the growth rate for a particular solution we
obtained. In this case, the fitness is high and minimally
varying when g is within a certain intermediate range.
When g is outside this range, either lower or higher, then
the fitness is very low and again varying weakly only with
the parameter. The transition between these two ranges
is sudden. For other solutions we found this behaviour
repeated qualitatively even though the numerical details
are somewhat different.
We found that the porin limitation L (Eq. 1 and reac-

tions R.III and R.IV) had a dominant influence on the
behaviour of the system. The factor L takes values between
zero and one and describes how close the cell is to the
maximal porin limit. L expresses the remaining space for
porins as a Hill function. The Hill parameter KL is there-
fore the half-capacity of the cell surface for porins. We
considered three different values, KL = 0.001, 0.5, 5000
(see Eq. 1). The latter condition means that there is in
essence no limit to the porin capacity of the cell. The first
condition proved to be severely limiting and a value of
KL = 0.5 is moderately limiting. Figure 3a illustrates the
impact of this parameter on the behaviour of the model.
It shows a histogram of random solutions for each of the
three limitation condition. For a very large value of KL,
corresponding to practically unlimited space on the sur-
face, random solutions have a low fitness and grow only
to about 100 units of biomass corresponding to a tenth
of the maximally possible. This means that they only con-
vert one out of 10 units of nutrient into growth. This is
in clear contrast to the random solutions achieved in the
case of extreme limitation. In this case, the distribution
peaks sharply at around 950 units, which means that these
random solutions convert 95 % of the nutrients that they
take-up. The moderately limited case is somewhere in-
between. For very low capacities, the fitness that can be
achieved is capped by the uptake time (Fig. 3b).
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Fig. 2 The fitness as a function of the growth rate constant g. To generate this graph we took a solution that evolved in the first iteration. Then we
removed N2 and varied the parameter g leaving all other parameters at their evolved value. The model suggest that there is a phase transition
between high growth and no growth

The effect of a low value of KL is to limit the propor-
tion of energy that can be diverted to uptake/metabolism
rather than to growth. In real organisms (or more com-
plex models) the same effect could be achieved by any sort
of limitation of the uptake/metabolic capacity. A low KL
leads to slow growth and high yield, but note that slow
growth is not a causal factor of the high yield. Instead,
the relationship between growth rate and yield is a con-
sequence of the dependence on the performance of the
system on the energy allocation strategy (see Appendix B).

In a model of a (hypothetical) organism where the energy
costs are met separately from the energy costs to produce
growth there would be no resource allocation problem
and the total cost of uptake would not depend on the
uptake speed.
Throughout this contribution the simulated cells are

offered two nutrient sources which we denote by N1 and
N2. We assume that N1 is of higher or equal quality as N2.
Built into the model is a repression mechanism mediated
by R (reflecting the role of dephospho EIIAGlc). When N1

Fig. 3 a The distribution of fitness of random solutions for three different values of the parameter KL . For small values of KL corresponding to little
space on the cell surface the random solutions are sharply peaked around a high fitness value converting well over 90 % of nutrient into growth. For
KL = 0.5 and KL = 5000 random solutions peak at much lower fitness. b The fitness of 650000 random parameters as a function of the capacity of
the uptake system. Each dot in this figure represents a simulation where parameters were chosen randomly and uniformly from the range [ 0, 15]
except for the value of KL chosen randomly from the range [ 0, 1]. The slight horizontal lines visible correspond to solutions that take up the second
nutrient only (at 1/3) and the first nutrient only (at 2/3). All simulations here show solutions grown in absence of competition
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is taken up by the cell then R is produced (reaction R.I)
and may bind to porins for the second nutrient (reaction
R.V), preventing uptake of N2. Together with the positive
feedback from the intra-cellularN2 to expression of porins
for N2 this can act as an effective repression mechanism
ofN2 uptake in the presence ofN1. This inducer exclusion
only works for some parameters and requires fine-tuning
in order to be effective. In our model inducer exclu-
sion is primarily controlled by three parameters, namely:
(i) The rate constant kb with which the regulator R
combines with P2 (reaction R.V), (ii) their dissociation
rate constant kub (in R.VI) and (iii) the rate dR with
which R is phosphorylated/removed from the system
(reaction VII). (The repressor R is produced when N1 is
taken up and its production rate is therefore not a tunable
parameter.)
The balance between these three parameters deter-

mines not only whether the system excludes the
N2 inducer, but also how fast it re-activates N2
uptake/metabolism once N1 is used up—how fast it
switches from N1 usage to N2 usage. Phosphorylation
(controlled by the rate constant dR in reaction R.VII) is the
main sink of R. The slower this process, the more R there
is during N1 uptake and the slower it is removed once N1
is exhausted. The uptake and metabolism of N2 cannot be
kick-started as long as there is a substantial amount of R
left. Hence, dR controls the time to switch between the
nutrient sources. Figure 4a illustrates this with a numer-
ical example. The graph shows the switching time (see
‘Methods’ Eq. 2 for a definition) as a function of dR for
several association rate constants kub. For the particular
parameters considered here it suggests that the switching
time is nearly inversely proportional to the removal rate
constant. Significant lag-times can be achieved for very
low removal rates dR.

The time to switch between N1 and N2 metabolism also
depends on the rate kub with which the repressor and
P2 dissociate. Figure 4b shows how this parameter influ-
ences the switching time. While the numerical details of
the graph are specific to the particular parametrisation of
the model the qualitative behaviour is generic. At low val-
ues kub determines the length of the lag-phase. Increasing
the parameters beyond a particular value then leads to a
situation where the switching time is negative, i.e. the two
nutrients are consumed simultaneously.

Evolving the parameters
Using artificial evolution it is possible to find parame-
ters with fitness much larger than the typical fitness as
indicated by random solutions. Even for the case of the
unlimited space, where random fitness clusters at around
10 % of the achievable biomass, the genetic algorithm can
find solutions that achieve a fitness of about 95 % of the
maximal fitness (see Fig. 5). Fitness values that high can
only be achieved when the incumbent is a low-performing
solution, i.e. especially during the first iteration of the GA.
For the second and subsequent iterations the competi-

tor has to evolve against increasingly fit incumbents. By
construction of the model, the incumbent and competi-
tor directly compete for the same nutrient source and
the maximal combined biomass cannot exceed the avail-
able nutrient. A direct implication of this is that any
growth of the competitor is unavailable for the incumbent.
In the ideal case the competitor can evolve parameters
that monopolise growth and prevent the incumbent from
growing at all.
To get an overview over the evolutionary dynamics of

the system it is convenient to think of it as proceed-
ing through 3 distinct phases. These phases are help-
ful to structure a narrative, but they are not necessarily

Fig. 4 The length of the lag phase as a function of the binding rate of parameters (a) dR and (b) kub . The graph was obtained by using a solution that
evolved regulated sequential uptake. All parameters were kept constant except for the ones indicated
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Fig. 5 The time when nutrient 1 is used up (left axis) and the biomass produced after 500 time units (right axis). The graph shows simulations
against a dummy incumbent. The time to take up nutrient 1 falls quickly during the first few iterations and then approaches a limit. a In the case of
extremely limited space total growth falls marginally only to about 95 %, whereas there are more significant drops in the case (b) of moderate
limitation where the efficieny falls to nearly 55 % and (c) in the case of no limitation where the efficiency falls to about 35 %. These graphs report the
results from individual evolutionary runs
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clearly distinguishable in every instance and a more thor-
ough account will be provided below (see Fig. 6). During
Phase I competitors increase the speed of nutrient uptake
and evolve to dominate the incumbents completely. They
achieve this by taking up nutrient much faster than the
incumbent and thus monopolise all nutrients. The incum-
bent achieves no or only minimal growth. After a number
of iterations—typically around 4—Phase II begins. Dur-
ing this phase the speed of nutrient uptake has reached
a system limit and it is not possible to increase the
speed of uptake. In Phase II competitors no longer evolve
to monopolise nutrient uptake but still outperform the
incumbent in the sense that they generate more biomass.
The final Phase III starts when an incumbent is so efficient
that it cannot be dominated any more. In this case, com-
petitors fail to evolve strong solutions and are sometimes
even quite uncompetitive. In subsequent iterations these
relatively poor solutions can then be dominated again, giv-
ing rise to stronger competitors that in turn are harder
to dominate in the iteration thereafter. In this final phase
there often emerges a quasi-cyclic pattern of fit incum-
bents followed by not so fit ones. For the purpose of this
article we will predominantly concentrate on Phase I & II
where the evolutionary dynamics is most interesting and
relevant for real organisms. We will argue below that the
third phase is an artefact of the model design and has no
relevant counterpart in real organisms.
For our experiments we considered three different cell

surface capacities, namely high, intermediate and low cor-
responding to the parameter values KL = 5000, 0.5, 0.001
respectively. All parameters displayed the three phases
described above. To understand the evolved solutions we

tested them in the absence of competition, i.e. we ran
them against a dummy incumbent that is unable to take
up any nutrient. Figure 5 illustrates the typical results
obtained over three iterations. It shows the time required
to use upN1 for the best solution evolved during each iter-
ation. For all three limitation conditions the time required
to take up N1 drops sharply until a system limit is found.
The minimum time required to take up nutrient

depends directly on the number of porins through which
the nutrient is taken up and hence is determined by the
parameter KL (that limits the maximal number of porins
expressed). To determine this minimum time we con-
sidered for each limitation scenarios six independently
evolved solutions from the eighth iteration. Over each of
these six different evolved solutions for each limitation we
determined the average time required to be 13.04 ± 2.34
for the extremely limited case of KL = 0.001. For the mod-
erately limited case the time was 1.438 ± 0.06 and in the
case of no limit we found a minimum time of 1.36 ± 0.2.
This indicates an increase of the uptake rate by a factor
of ten from the extremely limited capacity to unlimited
capacity.
The increase in speed coincides with a decrease in yield,

i.e. fitness. Using the same amount of nutrient, competi-
tors converted less of it into biomass. Over time, the solu-
tions therefore evolved a more inefficient use of nutrient.
In the case of extremely limited space for porins the result-
ing inefficiency is modest and the late iteration solutions
are merely 5 % worse than the best solution. However, as
the limitation on the number of porins on the cell sur-
face is released, the efficiency losses are much higher.
When there is no limitation on the number of porins,

Fig. 6 Fitness of solutions when run against their immediate predecessors. The bar over the number 2 indicates the fitness of the second solution
relative to the first one calculated as bm2/(bm1 + bm2). A value of 1 means that the incumbent (in this case solution 1) did not grow at all
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then eventually solutions utilise only 35 % of the avail-
able nutrient for growth (see Fig. 5). However in all cases,
the most inefficient solutions still have a higher yield than
the typical random solution. Note that inefficient does
not mean uncompetitive. Those inefficient solutions out-
perform the more efficient solutions that evolved during
earlier iterations.

Evolution of sequential nutrient uptake
The strategy of increasing the uptake speed to outperform
the incumbent finds a limit. The topology of the gene net-
work in this model allows cells to evolve sequential uptake
of nutrients by suppression of N2 uptake via R. Diauxic
growth, if it evolves, would require that the simulated
cells first take-up the preferred N1 and only then switch
on take-up of N2. This strategy only makes sense when
the capacity of the uptake system is limited, for exam-
ple, when the number of porins on the surface is limited.
Based on this reasoning one would therefore not expect to
see sequential nutrient uptake to evolve in the case of the
unlimited porin capacity (i.e. KL = 5000).
A closer examination of our results shows that the case

is somewhatmore subtle than expected. Sequential uptake
may evolve in all cases. However, unless the limitation of
uptake is strong this sequential uptake is not regulated
but merely a consequence of differing uptake speeds for
the two nutrients. In order to gain insight into this we
consider again the results of six evolutionary runs each
consisting of 10 iterations. We do this for each limitation
condition and count the number of competitors that show
a positive switching delay when calculated according to
Eq. 2; see Table 2. The table, shows a trend for a higher
probability of sequential uptake evolving in the case of

Table 2 For every limitation condition the sign of the switching
time was calculated. The table shows the average over six
repetitions of the evolution. A value of −1 means that all
repetitions had a negative switching time. Similarly, a value of +1
means that in all repetitions there was sequential uptake of
nutrients

Iteration Extreme Moderate Unlimited

1 -0.67 -0.67 -1.00

2 -0.67 -0.33 -1.00

3 -0.67 0.33 0.00

4 0.67 0.33 0.33

5 1.00 -0.67 -0.33

6 0.33 0.00 -0.33

7 0.00 0.33 0.00

8 0.67 0.33 -1.00

9 0.67 -0.33 -1.00

10 0.67 -1.00 -1.00

Bold numbers indicate a predominantly positive delay

extreme limitation than in the case of moderate limitation.
Simulations with unlimited capcitity have the lowest inci-
dence of simultaneous uptake. Yet, unexpectedly, there are
still some occurrences of unlimited uptake even in this lat-
ter case (during iterations 3–7). Hence, sequential uptake
evolved in all limitation scenarios to some extent.
To check that this is not due to a bias in the evolution

algorithm, we compared the results with a control where
N1 and N2 have the same growth value. In this case nearly
all solutions evolve simultaneous uptake of both nutrients
(data not shown) irrespective of the limitation scenario.
Considering the switching time alone suggests that

there is a relatively minor difference between the limited
and unlimited scenario. However, a closer inspection of
the results reveals that the nature of the sequential uptake
in the extremely limited and in the other two cases is fun-
damentally different. Sequential uptake could be realised
in two different ways: Firstly, either N1 is simply taken up
faster than N2. If the difference in take-up speed is large
enough, then it could be the case that by the timeN1 take-
up is finished take up of N2 has not properly started yet.
Or, secondly, another way to realise sequential uptake is
repression. In this case the two uptake systems do not
need to differ in speed but interact via inducer exclusion,
i.e. N1 uptake regulates down N2 uptake.
For as long as the nutrients on offer are fixed, the two

cases may not be immediately distinguishable. Yet, upon
changing conditions these would have very different prop-
erties. For example, in environments with N1 � N2 the
regulated cell would still take up all of the N1 first and
only then take up the other nutrient. In the unregulated
case, uptake of the two nutrients would eventually be
simultaneous once the amount of N1 is large enough.
It can also be seen directly from the parameters whether

or not a solution has regulated sequential uptake or not.
The crucial indicator is the ratio κ = kb/kub of the associ-
ation and dissociation rate of the repressor R and the porin
P2. Values κ � 1 indicate regulation. Thus it is possible
to distinguish between genuine regulation and unregu-
lated sequential nutrient uptake. We found that in the
extremely limited scenario the average κ is significantly
larger than in the other scenarios (see Fig. 7a). Indeed, we
could only find a single case of regulated sequential uptake
for the moderately limited scenario and no case for the
unlimited case.
We have now established that regulated sequential

uptake can only be realised when the parameters kb, kub
and dR are in the right relationship. Yet, there are many
ways to set these parameters so that they are compati-
ble with regulation. The question is now whether or not
some of these parameter configurations are better than
others. To understand this we plotted the fitness as a func-
tion of the phosphorylation rate constant dR in Fig. 8a
using a solution that had evolved to regulated sequential
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Fig. 7 a The ratio kb/kub averaged over six different evolutionary runs. The parameter kb determines how strongly repressors bind to the porins for
nutrient; similarly kub determines how strongly the repressor-porin complex dissociates. Hence, the ratio is an indicator of how strongly the system
represses uptake of N2 in the presence of external N1. A low value would indicate a weaker regulation than a high value. Note the logscale on the
vertical axis. b The remaining external nutrient N1 and N2 as a function of time using an example parameter set where sequential uptake has
evolved. The horizontal line indicates the value 450. The vertical line indicates the point where N1 is exhausted and where N2 crosses 450. The time
difference between the two horizontal lines is the switching delay (i.e. Eq. 2)

uptake. The figure indicates two different regimes. Firstly,
for small values of dR (on the left side of the graph) the
fitness of the competitor is very low but the fitness of the
incumbent is high.Within this regime both are unaffected
by further lowering the phosphorylation rate. This regime
can be understood as follows: The lower the value of dR
the longer it takes to switch onN2 uptake andmetabolism,
as shown above in Fig. 4a. The incumbent competes for
the same N2 source and does so only a bit slower than
the competitor. If the time required to switch goes above

a certain value, then the incumbent will be able to take
up all of N2 before the competitor can do so. The fit-
ness of the competitor and incumbent cross where this
happens. A further decrease of dR then remains inconse-
quential because switching has become irrelevant. Hence,
the low competitor fitness in this regime indicates that it
only takes up N1 but not N2.
As dR increases above this point, there is a change

of regime. The fitness of the competitor increases sud-
denly with a corresponding drop of the incumbent fitness.

Fig. 8 a There is an optimal length for the lag-phase. Along the horizontal axis we vary the parameter dR that determines how fast the regulator is
phosphorylated. The dependence of the fitness on this parameter shows two phases. For low values, corresponding to long lag-phases the fitness
does not depend on the parameter. For higher values, there is an optimum dR for the competitor. The inset shows a detailed view of the optimum.
In this particular example, the parameter dR evolved close to the otimal value. b The same data but time to take up N1 and the fitness plotted as a
function of the switching delay. All data from in these plots was obtained by taking a single evolved solution and varying the parameter dR . All
simulations here show an evolved solution and the incumbent against which this solution evolved
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The fitness of both incumbent and competitor become
sensitive to the value of the parameter. This transition
coincides with a critical value of the phosphorylation
rate that allows a sufficiently fast switch to enable the
competitor to take up N2 before the incumbent does.
A further increase of the phosphorylation rate leads to
yet another regime where the fitness is varying slowly.
In this regime, the sequential uptake strategy enables
the competitor to speed up uptake of N1 and get a
higher share for itself. There is an optimal value dR that
globally maximises the fitness of the competitor (see
Fig. 8a (inset)).
A complementary view can be gained by plotting the

fitness not against dR directly, but instead against the
switching delay (see Fig. 8b). (The switching delay is not
an independent variable of the system, but a consequence
of a particular parametrisation and calculated by Eq. 2).
Figure 8b shows that there is an optimal, non-zero delay
time. In stochastic models one would expect an opti-
mum as a result of the antagonistic relationship between
the switching speed and the cost of switching. In the
deterministic model we used here it is not immediately
clear why there is an optimum as well.
Instead, one would expect that faster switching (i.e.

shorter delay) is always better because it leads to a reduced
loss of time while switching between the nutrient sources.
Yet, note that the limiting case of very fast switching is
simply simultaneous nutrient uptake, which is the same
as no switching. A very long delay, on the other hand, is
detrimental as well because it leaves all of the N2 to the
incumbent.
To shed some light on this it is useful to consider how

the biomass and the time to take up all of N1 change as
a function of the switching delay (Fig. 8b). Below a criti-
cal switching delay this time correlates negatively with the
delay, but becomes independent of it above this thresh-
old value. This can be understood in concrete biological
terms: A shorter delay entails that more N2-specific porin
is on the surface during N1 uptake. This reduces the total
capacity available for N1 and consequently increases the
time required to take-up a given amount of N1. The point
at which N1 becomes independent of the delay time is
exactly whereN2 uptake is effectively switched off until all
of N1 is exhausted. This critical point coincides with the
optimal value for the delay.

Discussion
When cells compete with one another for limited nutrient
then this leads to a competitive pressure for fast uptake
and inefficient nutrient conversion. This is the case in
our model where two nutrients are on offer, but would
not be different in a model with only one nutrient. Less
efficient and giving less yield does not mean that these
later solutions are less successful evolutionarily. In a

competitive situation preventing others from utilising
nutrient is as important as converting nutrient into
growth. Cells that take up nutrient efficiently but slowly
will find themselves out-competed and irrelevant as com-
petitors. Speeding up the usage of resources is therefore
the primary adaptive effect here, whether or not there is
only one or several nutrients in the environment.
Sequential take-up of nutrient is a secondary effect only.

It may evolve when there are several nutrients in the
environment and one is better than the other. In our sim-
ulations we saw two modes of sequential uptake. Often
the more efficient nutrient is simply taken up faster than
the less efficient one. Less frequently proper regulation
evolved, i.e. where inducer exclusion prevents N2 uptake.
A necessary condition for this to happen is severe capacity
limitation of the uptake/metabolism.

Abstraction versus realism
The question now is to what extent this emerging pic-
ture of the evolution of diauxic growth is relevant for the
understanding of real systems. After all, the models we
used here relied on a specific network topology, a specific
abstraction of the cell model and a specific way to imple-
ment evolution. Each one of these components carries key
simplifications that could materially affect the outcome of
the model,
One of the central parameters we identified was KL the

capacity of porins. Prima facie it maps onto a specific part
of the dynamics of cells, namely the available space for
porins on the cell surface. Yet, it is not necessary to inter-
pret its meaning relative to real systems so narrowly. The
relevant dynamical effect ofKL is that it limits the speed of
uptake. Any mechanism that limits the speed of nutrient
uptake would have the same evolutionary effect. Cells cer-
tainly are subject to limits on the rate of nutrient uptake.
What precisely these limits are is harder to say, but not
important either, at least not for our purpose here. The
role of KL should be seen as representing this unknown
limitation whatever its origin.
A further simplification made here is that the direct cost

of regulation is ignored. One could argue that regulating
cells are at a disadvantage relative to non-regulating cells
because they have to carry the additional burden of the
regulatory mechanism. In the present case, this would be
the cost of the phosphorylation-dephosphorylation cycle.
This cost was not included in the present model because
it is not clear how to define it rigorously. Moreover, it is
also unclear what proportion of any cost is attributable to
sequential uptake regulation, rather than to some other
function of the PTS. That said, in a first approximation,
one can think of the regulation cost of as reducing the
growth value of glucose (i.e. N1 in our model) relative to
the second nutrient because an important factor of this
cost is the phosphorylation/dephosphorylation cycle.
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Connected to this is the representation of growth and
biomass. In real cells, growth is the result of a myriad
of biochemical reactions, metabolic pathways and regu-
latory interactions. In our model all this is compressed
into a single reaction (R. VIII). Such idealisations are not
appropriate when the aim of the model is to elucidate the
detailed biochemistry of a particular organisms. However,
here we are interested in general strategies for a large class
of organisms. Very detailed biochemical models would be
inappropriate because there is a large number of ways to
implement one and the same strategy. Biochemical detail
is therefore not only irrelevant but also hindering insight
by hiding the essential behind a deluge of accidental fea-
tures.
The purpose of the present contribution is precisely to

understand general strategies and not details of their bio-
chemical implementation. For example, we predict that
cells will evolve to take up nutrients faster when under
competitive pressure. In order for this prediction to be
relevant, all we need to assume is that real metabolic net-
works can be tuned to varying nutrient uptake speeds.
This is a weak assumption in that metabolic and other net-
works primarily rely on catalysed reactions whose rates
depend on the concentration of some protein. The pro-
duction of those can be scaled up and down within some
limits thus adjusting the speed of the network. It should
be noted, however, that a spatially structured population
may escape this race to faster uptake (see [22]). It would be
interesting to model whether or not such spatially struc-
tured populations still lead to the evolution of diauxic
growth.
Another question relates to GAs as amodel of evolution.

A key feature of GAs is that they rely on an explic-
itly defined fitness function. Real systems do not evolve
according to a fitness function but they will be subject to
many simultaneous adaptive pressures that emerge in the
environment in which they live. Indeed, it is chronically
difficult to understand the adaptive pressures that shape
the evolution of real organisms. One cannot therefore
have much confidence that any fitness function captures
the adaptive pressures that real cells face. However, for
the purpose of this contribution, the weakness of GAs as
models of evolution turns out to be their strength: The
single fitness function allows themodeller to specify a well
defined fitness criterion and thus to investigate a very par-
ticular hypothesis about the effect of adaptive pressures
on the evolution of diauxic growth.
Another problem of GAs with regards to the cur-

rent application is that they do not lend themselves
to model the evolution of a heterogeneous population.
Our approach with iterative rounds of evolutions cir-
cumvents this problem to some extent, but at the price
of introducing some artefacts. This concerns specifi-
cally Phase III of the evolution where fitness starts to

oscillate over iterations. In a heterogeneous population
such oscillations cannot occur. Depending on the muta-
tion rate suboptimal solutions still emerge, but they
would manifest themselves as a part of the Eigen-Schuster
quasi-species [23].

Evolution towards inefficiency
The competitive evolutionary dynamics forces cells away
from slow (but efficient) growth to rapid (but wasteful)
growth. This means that optimal in evolutionary terms
is not necessarily maximally efficient. The question is
now whether or not real cells have evolved similar inef-
ficiencies. One could argue that bacterial lab-strains are
isogenic and do not experience any competition. This is
not so. Given the high mutation rates in bacteria, even in
populations of lab-strains there will be a constant adap-
tive pressure from mutants arising within the population,
particularly if the strain has been grown frequently in
exponential growth.
This also leads to an immediately testable prediction

from our model: Wild-type cells are not optimised for
yield, but for growth rate and it is possible to obtain cells
with increased cell yield from artificial evolution exper-
iments designed to avoid (or minimise) cell-cell compe-
tition. The problem is that designing an experiment to
test this is difficult. One possibility is to grow cells in a
chemostat at low cell concentrations and to implement
a population-based selection mechanism. Altogether, it
is perhaps easier to increase competition rather than to
avoid it. Indeed, there is empirical evidence (for yeast) that
populations shift to a lower yield when in a competitive
environment [24].
The question of metabolic efficiency of cellular

metabolism has recently attracted significant inter-
est in a different context. It has long been known
that cells sometimes switch to apparently less efficient
metabolic pathways (for example Molenaar et al. [25] or
Gottstein et al. [26]) suggesting metabolic inefficiencies.
Upon closer inspection it was then found (at least in some
cases) that these apparently less efficient pathways are
indeed optimal [26] once the costs of protein production
are taken into account.
Prima facie this appears to be similar to what we

observed. In reality, the apparent inefficiencies discussed
in [25, 26] are in no clear relationship to the evolved inef-
ficiency discussed here. Their argument is about mech-
anisms of converting nutrient into usable energy in the
cell and relies on detailed accounting across several bio-
chemically feasible pathways. The metabolic pathways in
our model are too coarse grained to represent this. For
this reason alone the evolution of inefficiency we observe
must be a different effect. Furthermore, our models pre-
dict a true inefficiency that cannot be resolved by more
detailed accounting.
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Evolution of the lag-phase
In our evolutionary experiments we never observe the
emergence of a substantial lag-phase, not even in those
instances where cells evolve sequential nutrient uptake.
(Upon closer inspection of themodel output it can be seen
that the growth rate drops somewhat during the nutri-
ent switch (data not shown), but this happens only for a
very brief moment and is a very minor effect only.) This
suggests that lag-phases are not a generic phenomenon of
deterministic models, but require additional assumptions.
One possibility is that the lag-phase is simply a manifes-

tation of delays inherent to gene expression. In our sim-
ulations these delays are not modelled. While possibly a
contributing factor, delays are unlikely to be an exhaustive
explanation because the length of the lag-phase appears
to be, at least partially, under evolutionary control, as
discussed in the ‘Background’ section.
Another lead is given by recent experimental evidence

[4] suggesting that at the level of the individual cell a
clearly discernible lag-phase does not exist. Instead, one
can observe a wide distribution of switching times ranging
from 0 to very long. This links the lag-phase to stochas-
tic effects due to noise in gene expression [27–30]. In the
presence of noise fast regulation requires energy input
[31] leading to a trade-off between speed and cost of a
biological computation [13, 32]. This suggests an expla-
nation for the population-level lag-phase that is rooted in
stochastic models of gene expression.

Conclusion
Given our model there are three requirements for reg-
ulated sequential uptake to evolve. Firstly, there must
be competition. Secondly, uptake/metabolism need to
be capacity limited. Thirdly, there must be a quality
difference between the nutrients. Yet, even with those
conditions all fulfilled, regulated uptake will only evolve
sometimes, not always. Moreover, even without capac-
ity limitations unregulated sequential uptake may evolve
caused by large differences in the uptake speed of the two
nutrients.
Moreover, we could establish that in competitive growth

situations asmodelled here there will be a drive to increase
the growth rate at the expense of yield. Sequential uptake
of nutrient is only a secondary effect that evolves once the
potential for speed increase has been exhausted. Even if
sequential nutrient uptake evolves, substantial lag-phases
are sub-optimal in our set-up and we conjecture that a
lag-phase is a stochastic phenomenon and a consequence
of the inherent computational cost of such stochastic
regulation systems.

Methods
Artificial evolution
Artificial evolution both in wet-lab experiments [14, 17, 33]

and in silico [34–38] has been found useful to explore
the fitness landscape of organisms. In simulated evolu-
tion investigators usually evolve both the structure of the
network (i.e. the network topology) and its parametrisa-
tion (i.e. the numerical details). This is useful, for example,
when one is interested in finding a biochemical reaction
system that performs a particular task (i.e. a biochemi-
cal oscillator) and one is not concerned about modelling
a particular mechanism. In contrast, here we are inter-
ested in a particular strategy and we ask a very spe-
cific question: “How are cellular resources allocated to
uptake/metabolism and to growth?” In order to explore
the space of possibilities, it is not necessary to evolve
networks of different topology. In fact, this would inflate
the search space, increase computational costs and com-
plicate the analysis, without much corresponding extra
insight to counter-balance. Hence, here we limit ourselves
to a minimal but biologically plausible biochemical net-
work that allows for the strategy in question to evolve and
also allows us to explore allocation strategies.
We evolve parameters for a solution by using a genetic

algorithm (GA) [39]. GAs are a family of nature inspired
heuristic optimisation algorithms, and are a common
method in computer science to solve practical problems.
While they are loosely based on the idea of natural evolu-
tion, they are not a good model of how natural evolution
proceeds. However, for our purpose they are the ideal tool
because they make it possible to impose a specific adap-
tive pressure on the evolving entities, and hence to address
a very particular hypothesis. As such, they enable us to
explore precisely under which conditions diauxic growth
evolves.
GAs operate on a population of candidate solutions.

Each solution is assigned a fitness according to a user-
determined fitness function. A new population is obtained
from the existing one by choosing candidates based on
their fitness values and subjecting them to mutations and
crossover with a given probability. In the present case, a
mutation is a small adjustment of the parameter value
(subtracting or adding a random number of up to 10 % of
the parameter value); if the mutation results in a param-
eter value > 15 or < 0 then the respective parameter is
set to 15 or 0. Crossover produces a new offspring solu-
tion from two randomly chosen parents. This is done by
creating a new set of parameters from a sub-set of param-
eters from parent 1 and the complementary sub-set from
the other parent. Thus produced offspring may then also
be subject to point mutations.
During the selection step an unmodified and a mutated

version of the highest fitness solution is always retained
for the next generation. The selection algorithm pro-
ceeds by choosing a random parent cell from the existing
population. The chosen solution will be removed from
the original population. Next, with a probability P the
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solution will be swapped for a randomly generated solu-
tion and placed into the new population. Here we choose
P = 1− f /fm where f and fm are the fitness of the solution
in question and the maximal fitness in the population. If
the chosen solution is not swapped then with a probability
of 0.5 a second solution is chosen randomly and crossover
is performed. The newly formed offspring is then subject
to mutation with a probability of 0.2. Alternatively, if the
solution is not chosen to be the parent of a new crossed-
over solution it is mutated with a probability of 0.2 and
then added to the new population. Once the new popula-
tion has reached the determined size then each solution
is assigned a fitness value and selection starts over. In
the simulations reported here, the algorithm is run for
5000 generations, i.e. 5000 new populations. The popula-
tion size was chosen to be 50. As in all genetic algorithms
the initial population was assigned random parameter val-
ues uniformly drawn from the interval [ 0, 15]. While we
kept these parameters in all simulations reported here, the
performance of the GA is not sensitive to a variation of
these parameters and will perform well for a wide range of
mutation/crossover probabilities.
The fitness function chosen here was the amount of

biomass after 500 time units when run competitively
against a fixed solution. The above system of equations
specified one cell that draws nutrient from the environ-
ment. In our simulation the competitor was implemented
by adding another set of equations as above that works
independently but consumes the same external nutrients
N1 and N2. Hence, the two solutions compete with one
another for these external nutrients. Only the parameters
of one of these two solutions (henceforth referred to as
the competitor) were evolved, whereas the other solution
(the incumbent) was kept fixed throughout the evolution-
ary run.
We performed each evolutionary simulation in 10 iter-

ations. Each iteration consists of running a genetic algo-
rithm for 5000 generation. Once finished, we located the
best solution (i.e. the competitor that produced the high-
est biomass). This best solution was then used as the
incumbent in the following iteration (see Fig. 9). The
incumbent in the first iteration was a hand-constructed

unfit solution that was designed to be unable to take up
any nutrient from the environment. Hence, the competi-
tor during the first iteration did not face any competition.
All parameters were allowed to take any value from the

interval [ 0, 15]. The parameters kb, kub, dR weremultiplied
by 2000. This reflects the fact that the relevant reactions
happen on a time-scale much faster than gene expression.
While most parameters were evolvable, we kept some
fixed. Unless indicated otherwise, these have the same
value in all simulations reported here. The parameters are:
The maximal uptake rate of a porin kNi (set to 15 through-
out), the Hill exponent of all the Hill functionsH (set to 2),
total capacity of the cell surface for porins (parameter KL).
For the latter we considered three values, namely 5000, 0.5
and 0.001, corresponding to unlimited, moderately lim-
ited and extremely limited capacity. The total amount of
obtainable energy was kept fixed throughout at 1000 dur-
ing the evolutionary runs. However, at the beginning of
each generation, the amount of N1 was randomly chosen
from the range [ 100, 900]. The amount of N2 was then
chosen so as to yield the energy equivalent of N1 = 1000.
We assumedN2 to have half the energy ofN1. Hence, ifN1
was set to 500 then N2 was chosen to be 1000.
To analyse the properties of solutions that evolved the

fittest individual from each iteration was chosen and then
run with both N1 and N2 set to 500 to determine the
following properties: The biomass when grown in isola-
tion; the biomass when grown against its competitor (i.e.
the solution against which it evolved); the time T (1)

off when
N1 reached a value of 1; the time T (2)

on when uptake of
N2 started. In order to allow for some “leak uptake,” we
defined the start of N2 when it reached a value of 450.
Based on this, we defined the switching time as follows:

T = T (2)
on − T (1)

off (2)

The switching delay time is illustrated in Fig. 7b. Hence-
forth, we will consider uptake to be “sequential,” when the
switching delay is positive, and “concurrent” otherwise.
The precise value of 450 is arbitrary to some extent. Disal-
lowing any leak rate (i.e. choosing the threshold to be 499)

Fig. 9 Schematic representation of the competitive genetic algorithm used here. The incumbent is the fittest competitor from the previous run of
the GA
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would be not very informative. It would indicate that N2
was switched on when in fact only a little bit was taken up.
On the other hand, too generous a value (e.g. a threshold
of 100) would misjudge the time when N2 started to be
taken up. As will become clear in “Results” the conclusions
drawn from the simulations will not depend on the precise
threshold value assumed.The current value was chosen as
a reasonable compromise based on many observations of
full model results.

Appendix A: Modelling the repression: Bistability
Uptake and metabolism of N2 is regulated by R asso-
ciating with P2 thus making the porin unavailable. In a
simplified model of this one can show that expression
of P2 is bi-stable with two stable states corresponding to
P2 being expressed or not being expressed. The switch
between between the steady states depends on the associ-
ation rate of R and P2,We assume that an external nutrient
N is taken up with a rate of E · l where E is the num-
ber of specific porins for this nutrient and l is some rate
constant; here we choose the units such that the fixed con-
centration of the external nutrient is 1. We denote this
internalised nutrient as P. Both P and E are broken down
with a specific rate dX . This breakdown of E can be inter-
preted asmodelling the binding with the (not represented)
regulator R in the limiting case of a vanishing dissociation
rate.

Ė = k1
Ph

Ph + Kh − dEE (3)

Ṗ = El − dPP (4)

Within the area of feasible parameters, the system can
display bistable behaviour when the Hill exponent h > 1.

In this case, there are three steady state solutions, two of
which are stable. In the case of h = 2 the system has the
following steady state solutions.

P∗± = l ±
√

−4 dP2dE2K2 + l2
2dPdE

These are real as long as the incoming flux of nutrients is
large enough, i.e. l > 2dEdPK . Beyond that, no solution
exists.

Appendix B: Maximising flux to biomass
production
Central to the evolution of the uptake system is the
resource allocation problem. Here we present a simple,
but analytically solvable model of resource allocation in
the cell. We assume that the resource N is taken up by
porins P proportional to the amount of external nutri-
entN. This kinetic approximates the Hill equations during
early periods of uptake when the porins are saturated.
Internal nutrient P is converted into biomass with a rate
k2 and porins with a rate k3. This can be formulated by the
following two differential equations.

Ė = k1NP − (k2 + k3)E
Ṗ = k3E − k4P (5)

We assume that k1 = k4 = 1 which simplifies the anal-
ysis without affecting the result in a fundamental way.
The system of equations can then be solved analytically.

Fig. 10 Keeping t = 1, n = 2 we plot the flux to biomass as a function of k2. As predicted there is a clear optimal value. This optimal values shifts to
the left with time
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Assuming the initial condition E(0) = 1,E(0) = 0 we
obtain:

P(t) = 1
2

(
e(a−1)t + e−(a+1)t

)

E(t) = a
2(k2 − 1)

(
e(a−1)t + e−(a+1)t

)
(6)

here a are given by

a =
√
N − Nk2

This is a real number for k2 ≥ 1. The number of porins
P(t) grows exponentially in time for k2 < N−1

N . We are
interested in the flux of the system towards biomass which
is given by:

Fbm ∼ k2 · N · P(t) (7)

Hence, for any T = t the flux is zero for k2 = 0. When
k2 = 1 then P(t) ∼ exp(−T). Expanding P(t) into a Taylor
series around k2 = 1 it can be seen that for all t = T
it is the case that P(t) increases for decreasing k2 in the
neighbourhood of k2 = 1. Consequently, there is a value
0 < kmax

2 < 1 with maximum flux to biomass (Fig. 10).
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