51 research outputs found

    Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors

    Nanomaterial-Mediated CNS Delivery of Diagnostic and Therapeutic Agents

    No full text
    Research into the diagnosis and treatment of central nervous system (CNS) diseases has been enhanced by rapid advances in nanotechnology and an expansion in the library of nanostructured carriers. This review discusses the latest applications of nanomaterials in the CNS with an emphasis on brain tumors. Novel administration routes and transport mechanisms for nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents to bypass or cross the blood brain barrier (BBB) are also discussed. These include temporary disruption of the BBB, use of impregnated polymers (polymer wafers), convection-enhanced delivery (CED), and intranasal delivery. Moreover, an in vitro BBB model capable of mimicking geometrical, cellular and rheological features of the human cerebrovasculature has been developed. This is a useful tool that can be used for screening CNS nanoparticles or therapeutics prior to in vivo and clinical investigation. A discussion of this novel model is included
    • …
    corecore