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Abstract

Osteoarthritis (OA) manifests with chronic pain, motor impairment, and propriocep-

tive changes. However, the role of the brain in the disease is largely unknown. Here,

we studied brain networks using the mathematical properties of graphs in a large

sample of knee and hip OA (KOA, n = 91; HOA, n = 23) patients. We used a robust

validation strategy by subdividing the KOA data into discovery and testing groups

and tested the generalizability of our findings in HOA. Despite brain global topologi-

cal properties being conserved in OA, we show there is a network wide pattern of

reorganization that can be captured at the subject-level by a single measure, the hub

disruption index. We localized reorganization patterns and uncovered a shift in the

hierarchy of network hubs in OA: primary sensory and motor regions and para-

hippocampal gyrus behave as hubs and insular cortex loses its central placement. At

an intermediate level of network structure, frontoparietal and cingulo-opercular mod-

ules showed preferential reorganization. We examined the association between net-

work properties and clinical correlates: global disruption indices and isolated degree

properties did not reflect clinical parameters; however, by modeling whole brain

nodal degree properties, we identified a distributed set of regions that reliably

predicted pain intensity in KOA and generalized to hip OA. Together, our findings

reveal that while conserving global topological properties, brain network architecture

reorganizes in OA, at both global and local scale. Network connectivity related to OA

pain intensity is dissociated from the major hub disruptions, challenging the extent of

dependence of OA pain on nociceptive signaling.
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1 | INTRODUCTION

Osteoarthritis (OA) is one of the most prevalent sources of chronic

musculoskeletal pain (Neogi, 2013), and a leading cause of disability

worldwide (Centers for Disease Control and Prevention, 2009;

Murray et al., 2012). Pain is the hallmark symptom of the disease, con-

tributing to reduced mobility and psychological stress, and rep-

resenting the main motivation to seek medical care (Hawker, 2009).

When compared to other chronic painful conditions, OA pain is

unique in numerous ways: there is an extraordinary interpatient
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variability in clinical symptoms and structural manifestations, and a

heterogeneous response to treatment interventions (Deveza, Nel-

son, & Loeser, 2019). It is not clear to what extent pain is a reflection

of afferent nociceptive signaling, represents central adaptive or mal-

adaptive processes, and/or is contingent on psychological and emo-

tional dimensions (Neogi, 2013). Evidence derived from rodent

models of OA shows nervous system reorganization, mostly highlight-

ing peripheral changes in nociceptors and spinal cord circuitry (Miller

et al., 2015; Miller, Block, & Malfait, 2017); however, the contribution

of the brain in the development and progression of OA pain remains

minimally explored.

Individual brain regions are functionally specialized, and informa-

tion exchange between brain areas is fundamental for integrated per-

ceptual states. All cognitive-emotional functions require such

integration (van den Heuvel & Sporns, 2013). Thus, functional resting-

state brain network properties reflect both disease and normal abili-

ties of information integration in the brain. By describing brain net-

works as graphs, essentially comprising sets of nodes (neuronal

elements/brain regions) and edges (their interconnections), we can

study key organizational features of the brain's network architecture:

locally, at the each node level; globally, both by considering whole-

brain mean nodal properties, and by calculating graph disruption

indices—global metrics sensitive to the reorganization of nodes within

the network (Mansour et al., 2016).

Using this theoretical framework, we (Huang et al., 2019; Man-

sour et al., 2016) and other groups (De Pauw et al., 2020; Kaplan

et al., 2019) have studied brain networks' global topological properties

in chronic pain. It has been shown, for diverse clinical conditions, that

CP is associated with large-scale brain functional changes. Specifically

for OA pain, we have recently shown that brain gray matter distor-

tions are distributed across cortical and subcortical structures and

relate to pain correlates (Barroso et al., 2020). Moreover, differences

in brain modular organization in OA were previously reported in the

insula and parietal cortices (Mansour et al., 2016), and the anterior

insula was proposed as a key element driving changes in brain net-

work temporal dynamics in chronic OA pain patients (Cottam,

Iwabuchi, Drabek, Reckziegel, & Auer, 2018). Here, we hypothesize

that together with a global disturbance, local network metrics should

be altered in several regions/networks for which structural/functional

properties have shown abnormalities in OA, and moreover, that the

community/subnetwork organization should also reflect the disease

process.

In addition, there is good evidence that brain-network organiza-

tional properties are closely related to function, both in health and in

disease (Stam, 2014). Graph disruption indices and local topological

changes were previously related to pain intensity and other dimen-

sions of clinical pain (De Pauw et al., 2020; Kaplan et al., 2019; Man-

sour et al., 2016). We therefore theorize that global and local network

disruptions in OA will relate with pain and other key clinical correlates

of the disease, potentially reflecting adaptive and maladaptive brain

anatomical and physiological plasticity.

In order to test our hypotheses, using resting state functional

MRI data from a large sample of long-duration, severe OA pain

patients, we modeled large-scale brain networks as graphs. We inves-

tigated differences between knee OA (KOA) patients and healthy con-

trols (HC) at multiple levels of network topographic structure.

Moreover, we evaluated the associations between brain topological

properties and clinical correlates of the disease. To ensure that out-

comes were robust and applicable to KOA cohorts at large, we vali-

dated our findings in a KOA hold out sample, and further tested

generalizability in a hip OA (HOA) sample.

2 | MATERIALS AND METHODS

2.1 | Participants

This study included 95 KOA and 24 HOA patients with indication for

total arthroplasty and 36 HC participants. Patients were recruited in

the Orthopedic Department of Centro Hospitalar e Universitário de S~ao

Jo~ao, Porto, Portugal. HC were healthy subjects from the same geo-

graphic area, age range, social and educational background as the OA

patients.

The following inclusion criteria for OA were applied: (a) age

between 45 and 75 years; (b) diagnosis of OA according to the clini-

cal classification criteria of the American College of Rheumatology

(4); (c) surgical indication for arthroplasty. Exclusion criteria

included: (a) secondary OA due to congenital and development dis-

eases or inflammatory and auto-immune articular diseases;

(b) bilateral OA with indication for contralateral arthroplasty in the

following year or bilateral knee pain with less than or equal to four

points difference on the numeric pain rating scale (NRS) between

knees; (c) other chronic pain conditions (e.g., low back pain; fibromy-

algia; chronic pelvic pain; chronic headache/migraine); (d) chronic

neurological or psychiatric disease (e.g., multiple sclerosis and other

demyelinating diseases; peripheral neuropathy; bipolar and related

disorders; neurodevelopment disorders); and (e) previous history of

stroke or traumatic brain injury. Controls were included if matching

patients demographic characteristics regarding age, gender, and

educational level. Exclusion criteria for this group were the same as

for patients, in addition to the diagnosis of OA in any joint, or

undiagnosed joint pain.

All OA patients were evaluated 2–6 weeks prior to surgery with a

clinical examination, questionnaires, and a brain MRI. HC underwent a

clinical examination and completed a brain MRI. All subjects provided

informed consent prior to participating in the study, and all methods

were carried out in accordance with the local Ethics Committee (Com-

iss~ao de Ética para a Saúde, Centro Hospitalar e Universitário de S~ao

Jo~ao) and the Helsinki declaration.

After brain imaging quality control, a total of 91 KOA, 23 HOA,

and 35 HC were considered for formal analysis. OA patients were

subdivided in three groups: KOA discovery (n = 46); KOA validation

(n = 45), here using the Kennard–Stone algorithm (5), which allowed

us to select samples with a uniform distribution over a multivariate

predictor space (age, sex, pain levels, and behavioral variables); and

HOA. The first set, the KOA discovery group, was used in the primary
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analysis of the paper; the KOA validation and the HOA groups were

used to assess the external validity of the main findings.

2.2 | Clinical parameters

Clinical and demographic parameters were obtained at the initial

interview, after consenting the patient, and by clinical chart assess-

ment. All patients completed a battery of questionnaires assessing

multiple domains: NRS for pain; Knee and Hip Injury and Osteoarthri-

tis Score (KOOS) (Gonçalves, Cabri, Pinheiro, & Ferreira, 2009; Roos &

Toksvig-Larsen, 2003); Hospital Anxiety and Depression Scale (HADS)

(Pais-Ribeiro et al., 2007; Zigmond & Snaith, 1983); Pain Cat-

astrophizing Scale (PCS) (Azevedo, 2007; Sullivan, Bishop, &

Pivik, 1995); Doleur Neuropathique en 4 questions—Neuropathic pain

scale (DN4) (Azevedo, 2007; Bouhassira et al., 2005). All question-

naires were used in their Portuguese validated versions. We also

assessed physical performance by applying two distinct tasks: timed

up and go test (TUG) (Podsiadlo & Richardson, 1991) and 6-min walk-

ing test (6MWT) (Balke, 1963; Rejeski et al., 1995). Finally, joint X-rays

were also assessed by two trained radiologists and classified using the

Kellgren–Lawrence scale (Kellgren & Lawrence, 1957).

Regarding these parameters, descriptive statistics were used to

describe the study sample, with continuous variables presented as mean

and SDs, and categorical data as numbers and percentages. Comparisons

between HC, KOA, and HOA groups were done with analysis of variable

and independent sample t tests or chi-square (X2) tests, for continuous

parametrical variables and categorical data, respectively.

2.3 | Magnetic resonance imaging data acquisition

For all participants, MPRAGE type T1-anatomical brain images were acquired

with a 3.0 T Siemen Magnetom Spectra scanner (Siemens Medical, Erlagen,

Germany). Acquisition parameters: isometric voxel size = 1 × 1 × 1 mm,

TR = 2,500 ms, TE = 3.31 ms, flip angle = 9�, in-plane matrix

resolution = 256 × 256, number of slices = 160; field of view = 256 mm.

Resting-state fMRI (rs-fMRI) images were acquired at the same

session and scanner, with the following parameters: Multi-slice T2*-

weighted echo-planar images with repetition time TR = 2,500 ms;

echo time TE = 30 ms; flip angle = 90 �; voxel size = 3.4 × 3.4 × 3.0;

in-plane resolution = 64 × 64, number of volumes 300; number of

slices = 40 (slices covered the whole brain from the cerebellum to the

vertex), with interleaved ordering. The time of acquisition lasted

12 min and 39 s, and patients were instructed to keep their eyes open

and to remain still during the acquisition.

2.4 | rs-fMRI data preprocessing

Preprocessing of each subject's time series of rs-fMRI volumes was

performed using the FMRIB Expert Analysis Tool (www.fmrib.ox.ac.

uk/fsl) (Smith et al., 2004) and in-house software and encompassed

the following steps: discarding the first four (10 s) volumes to elimi-

nate saturation effects and achieve steady-state magnetization; skull

extraction using BET; slice time correction; motion correction; spatial

smoothing with a full width at half maximum Gaussian kernel of

5 mm; high pass temporal filtering (0.1 Hz) for correcting low fre-

quency signal drift. Afterward, several sources of noise were removed

from the data: we regressed the six parameters obtained by rigid body

correction of head motion, global signal averaged over all voxels of

the brain, white matter signal averaged over all voxels of eroded white

matter region, and ventricular signal averaged over all voxels of

eroded ventricle regions. Next, in order to further remove motion arti-

facts, we performed a motion-volume censoring procedure: we calcu-

lated a composite motion score based on normative thresholds

(volumes with frame-wise displacement larger than 0.5 mm, derivative

variance root mean square after Z-normalization larger than 2.3 and

deviation of volume intensity within the predefined gray matter mask

larger then 2.3); then, we scrubbed the detected volume (volume = i)

and adjacent four volumes (i-2,i-1, i, i + 1, i + 2) (Power et al., 2014;

Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). Finally, and

because we are interested in low-frequency fluctuations of rs-fMRI

signal, we applied a Butterworth filter (0.008–0.1 Hz) to the scrubbed

time-series. Finally, all preprocessed rs-fMRI data were normalized to

standard MNI space, using nonlinear registration (FNIRT) (ref: https://

www.fmrib.ox.ac.uk/datasets/techrep/tr07ja1/tr07ja1.pdf). The regis-

tered brains were visually inspected to ensure optimal registration.

2.5 | Quality control of rs-fMRI data

To ensure optimal quality of the data after preprocessing a two-step pro-

cedure was performed. First, the number of censored motion values was

evaluated as this reflects the extent of a subject's motion during scanning;

a subject reached the criterion for exclusion if he/she had less than

200 volumes after censoring (8 min of rs-fMRI scanning). Mean and SD of

volume censoring was 30 ± 7.3, and maximal volume censoring was 51.

Thus, no subjects were excluded given this criterion.

Second, a functional connectivity outlier detection was

implemented: for each subject the resting-state functional connectiv-

ity was calculated across 256 regions of interest (ROIs) (Power

et al., 2011), then the correlation coefficients of all subjects in each

group (KOA, total sample; HC) was calculated separately; finally the

average of each column was calculated, representing the mean corre-

lation coefficient across subjects of the correlation coefficient across

the 256 ROIs. Subjects with low average within-group correlation

(<2 SDs from the average in each group) were identified as outliers

and excluded from the analysis. A total of four KOA patients, one

HOA patient, and one HC subject were excluded given this criterion.

2.6 | Brain graph calculation and construction

Brain networks can be mathematically described as graphs, comprising

sets of nodes (N, ROIs) and edges (M, or connections, here equivalent

1208 BARROSO ET AL.
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F IGURE 1 Methodological overview of the computation pipeline for global and nodal graph properties, hub disruption indices and modular
reorganization analysis. (a) For each subject included in the study, brain was parcellated in 256 regions of interest (ROIs) from a 264 parcellation
Scheme (eight ROIs corresponding to the cerebellum were excluded). For each ROI, blood oxygenation level-dependent signal (BOLD) was
extracted as an average over voxels within 10-mm diameter spheres with center at defined peak coordinate. Next, a 256 × 256 Pearson's full
correlation matrix was computed between all pairs of ROIs time-series; nine adjacency matrices were then calculated at different link densities
(2–10%). (b) Graph properties (degree, clustering coefficient, efficiency, and betweenness centrality) were estimated using the Brain Connectivity
Toolbox: First, we calculated nodal (local level) properties; latter, by averaging each property across the 256 ROIs we computed the
corresponding global measurement. (c) Hub disruption indices were calculated for each subject as the gradient of a straight line fitted to a
scatterplot of the nodal property of interest, for example, degree, minus the same nodal property on average in HC ([osteoarthritis [OA] patient—
HC group], y-axis), versus the mean nodal property in the HC group (x-axis). (d) Modular reorganization was studied by calculating multislice
modularity and agreement matrices separately for knee OA (KOA) and controls (agreement: 0 to 1). A difference agreement matrix was then
considered, by subtracting controls agreement matrix to KOA (diff. agreement: −1 to 1). A positive entrance value (red) indicates higher likelihood
for the two corresponding ROIs to be in the same module in KOA, but not in the control group. The opposite for negative entrance values (blue).
Near zero values reveals pairs of ROIs that behave similarly in both groups. A permutational-based random model was created by shuffling the
two groups over 1,000 times, for further statistical testing
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to interregional pathways). The connectivity structure of a graph is

represented by its adjacency matrix; here, an asymmetric binary

matrix representing unweighted edges (van den Heuvel &

Sporns, 2013). To construct the brain connectivity network for each

subject, we followed the approach suggested by Mansour

et al. (2016). As shown in Figure 1a, the brain was divided in

256 spherical ROIs, as described by Power et al. (2011), (original

parcellation scheme with 264 regions, cerebellum was excluded from

the analysis), with 5-mm radius, located at coordinates showing reli-

able activity across a set of tasks and displaying a plausible functional

structure, spanning the cerebral cortex and subcortical structures.

Blood oxygenation level-dependent (BOLD) signal of each ROI was

extracted and linear Pearson's correlations were performed on time

courses averaged within each ROI, generating a 256 × 256 correlation

matrix for each subject. To avoid arbitrary thresholding, network anal-

ysis was conducted on fully connected graphs, with both positive and

negative values. These matrices were then thresholded to generate

binary undirected graphs with connection density (number of edges

proportional to the maximum possible number of edges

((N × N − 1)/2)) in the range 2–10%.

Following, several topological graph properties were com-

puted using the brain connectivity toolbox (Rubinov &

Sporns, 2010), as shown in Figure 1b. Under each link density, dis-

tinct topological properties were estimated at each node of each

individual graph (local properties): degree (D), captures the number

of connections that a node has to other nodes of the graph, and

high degree nodes can be considered as centers for information

integration; efficiency (E), measures how the information is propa-

gated in the network, with high nodal efficiency reflecting higher

information propagation ability; clustering coefficient (CC): repre-

sents the fraction of edges (out of all possible) that connect the

neighbors of a given node, a measure of segregation; betweenness

centrality (BC): represents the number of short paths between all

nodes of the network that pass through a given node, a measure of

influence. For each subject, at each link density, these metrics

were estimated for all 256 nodes—local properties; correspondent

global properties are calculated as the average across all nodes

(Rubinov & Sporns, 2010).

Two other properties were estimated at a global level—modularity

(Q, measure of the decomposability of a graph into several sparsely

interconnected structures) and small-worldness (evaluates the net-

work organization compared to a matched random graph). Modularity

was calculated using the Louvain community detection algorithm

averaged over 100 repetitions (Rubinov & Sporns, 2010). Small-world-

ness, based on the tradeoff between clustering and global efficiency

(Humphries & Gurney, 2008), is calculated as: ((clusteringJ/

clusteringrandom)/(efficiencyrandom/efficiencyJ)), where a network is

deemed a “small-world” if the ratio >2.

Differences in global graph properties between groups

(KOA and HC) were computed using repeated measures

ANCOVA (densities 2–10%), controlling for the effects of age

and gender.

2.7 | Graph topological hub disruption indices

We estimated the hub disruption index, K, for the different graph

properties computed before: disruption index for degree (KD), effi-

ciency (KE), clustering coefficient (KCC), and betweenness centrality

(KBC), following methods described by Achard et al. (2012). This mea-

sure allows us to summarize the abnormal profile of nodal connectiv-

ity and topological metrics of an individual subject in relation to the

normative topology of the HC group. Figure 1c depicts the computa-

tion process. For each subject, we first subtract the HC group mean

nodal degree from the degree of the corresponding node in a given

individual; next, we plot this individual difference against the HC

group mean. The hub disruption index, K, is then defined as the gradi-

ent of a straight line fitted to the scatter plot following the linear

regression (y = K × x + b), where y = nodal degree of the subject—

mean nodal degree of HC; x = mean nodal degree of HC; b = residual

or intercept of the regression. After computing the individual disrup-

tion indices, significant differences between groups in KD, KE, KCC, and

KBC were calculated at 5% link density using an ANCOVA with age

and sex as covariates of no-interest. We additionally performed a

repeated measure ANCOVA accounting for all link densities (2–10%),

while controlling for age and sex. Relationships between K measures

and clinical parameters were estimated using linear partial correla-

tions, controlling for the effect of age and sex. Given the multiplicity

of measures (4 hub disruption indices; 12 clinical parameters), FDR

correction for multiple comparisons was applied at α = .05.

In order to investigate the contributions of regional perturbations

to K measures, we recomputed individual K indices after random

removal of 80% of nodes. Pearson's correlation with the original

K measures was then examined.

2.8 | Characterization of hub disruption—Nodal
statistical analysis

Nodal degree properties were further studied in an effort to better

characterize the particular patterns underlying these global changes

(KD), and better examine their relationship with clinical properties of

the disease. We applied two distinct strategies:

1. We identified nodes that showed a difference in mean degree (y,

nodal degree of OA group—nodal degree of HC) greater than

±2 SD from the mean difference value; we used permutation-

based testing to estimate statistical significance of the between

group differences for identified ROIs by randomly assigning sub-

jects to two groups, arbitrarily defining one as the reference and

estimating the nodal differences between groups. We repeated

this process 10,000 times to sample the null distribution of the

nodal group mean difference. After identifying topmost disrupted

cortical nodes, we studied their association with clinical parame-

ters of the disease. We then linearly modeled each clinical variable

of interest with the identified nodes, applying a stepwise forward

1210 BARROSO ET AL.
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and backward selection method, with α-to-enter set at .05 and

α-to-remove at .10. For all regression models, assumptions of line-

arity, independence of observations, homoscedasticity, and

absence of multicollinearity were met, and residuals were approxi-

mately normally distributed.

2. In a more exploratory form, and given that K permeates the whole-

brain network, implicating that the disruption is not merely driven

by functional changes to specific regions or pathways, we studied

the relationship of whole-brain nodal degree and pain intensity in

OA using a L1/L2 regularized linear regression (i.e., elastic net)

(Zou & Hastie, 2005). This method allows us to remove predictors

with low influence on the outcome while regularizing for enhanced

generalization. The coefficients of the nonrelevant features are

shrunk toward zero, simplifying the model and reducing overfitting.

Using the KOA discovery group, we applied a linear regression

with a regularization penalty α = .5, to predict pain intensity (NRS),

based on the nodal degree properties of all 256 ROIs. Ten-fold

cross-validation was used to choose the hyperparameter, λ (shrink-

age parameter), that minimized mean squared error (MSE) over a

default grid size of 100; the hyperparameter λ that generated the

smallest MSE was selected for the final model (Friedman, Hastie, &

Tibshirani, 2010). Performance of the model was assessed in the

discovery and validation cohorts. All degree nodal properties were

adjusted for age and sex prior to these analyses, by linearly regres-

sion and adding the adjusted fitted values and residuals for each

observation.

2.9 | Modular reorganization analysis

We studied brain networks at an intermediate scale of organization—

community structure or modularity—following methods described by

Mano et al. (2018)); this approach is based on community detection in

multislice networks (Mucha, Richardson, Macon, Porter, &

Onnela, 2010) and focuses on detecting differences in brain network

modularity between groups (OA, HC) by calculating a measure of con-

sensus modularity pattern – modularity agreement matrix (AM). Ana-

lytical steps are depicted in Figure 1d. First, for each group separately

(OA discovery, HC), we use a categorical multislice modularity algo-

rithm (Jeub, Bazzi, Jutla, & Mucha, 2011), where the same node is

coupled among all subjects (slices), with 10% link density matrices.

Coupling strength (ω = 0.1) and modularity resolution (γ = 1.5) are free

parameters that were a priori defined based on previous research

(Mano et al., 2018; Mucha et al., 2010). This allows us to create a sin-

gle symmetric AM representing each group, where each entry has a

value within [0,1], representing the agreement between pairs of

nodes. As the number of subjects in each group was different

(OA = 46; HC = 35), and the modularity estimation is a probabilistic

procedure, we calculated the AMs 1,000 times, selecting randomly

34 patients for each group, and computed the average across repeti-

tions. Next, having one mean AM per group, we computed the agree-

ment difference matrix: <OA AM> − <HC AM>. Here, values range

from [−1,1]; large negative values correspond to nodes that are

recurrently part of the same modules in controls but not in the OA

group, large positive values represent the opposite. Values close to

0 represent nodes with the same behavior, either with high agreement

or low agreement in both groups. In order to attain an overall metric

of reorganization per region, the absolute sum of positive and nega-

tive contributions was computed per node—nodal modular

reorganization.

Finally, following Mano et al. (2018), in order to evaluate the sta-

tistical significance, we performed a permutational analysis, were we

randomly resampled pain and control subjects into two groups and

repeated the full analysis—also 1,000 times. Based on the proportion

of times the resampled nodal modular reorganization exceeded the

correct value we calculated one-sided p-values and used a threshold

of p < .01 to consider significant nodal modular reorganization values.

2.10 | Analysis validation

We aimed to validate the principal findings from the discovery cohort,

specifically determining the hub disruption index significance, deter-

mining the hub status of disturbed regions and relationship with clini-

cal properties; we also validated the machine learning algorithm

applied for pain intensity prediction and modular reorganization in the

KOA and HOA validation groups. Connectivity matrices for the valida-

tion groups were created and thresholded using identical procedures

as described above. Contrasts requiring HCs were assessed with the

same 35 HC participants from the discovery data set.

2.11 | Software/code

Analysis was performed using MATLAB 2019.b (MATLAB and Brain

Connectivity Toolbox release 2019a, The MathWorks, Inc., Natick,

MA) and tools from the brain connectivity toolbox (Rubinov &

Sporns, 2010). Code for modularity reorganization analysis was

adapted from Mano et al (http://doi.org/10.5281/zenodo.1183399)

(Mano et al., 2018). Brain figures of ROI and functional connectivity

networks were visualized on a surface rendering of a human brain

atlas with BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

3 | RESULTS

3.1 | Demographic and clinical characteristics

No significant differences for gender, BMI, or smoking habit were

seen between the KOA and HC groups (Table 1). However, the HC

group had a significantly lower mean age (t = −9.27; p < .001),

supporting the importance of controlling for this variable in further

analyses. Social-cultural variables (educational level; habitation; mar-

riage status) did not show significant differences between groups

(p > .05 for all). Comparing the validation samples (KOA and HOA)

with the KOA discovery sample (demographic, pain related, and
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behavioral data presented in Table 2), both KOA groups were bal-

anced regarding demographic and clinical outcomes; HOA patients

presented shorter pain duration, worse radiographic severity and a

lower neuropathic pain score; this group had a younger mean age and

a significantly higher number of male subjects.

3.2 | Global connectivity and network topology
properties are not altered in KOA

There were no statistically significant differences between groups

(KOA vs. HC) on global measures of network topology as depicted in

Figure S1. At every density of functional connections tested (1–10%),

functional networks had similar clustering coefficient, global effi-

ciency, betweenness centrality, and modularity, measures reflecting

distinct network properties (segregation, integration, centrality, com-

munity structure). Both groups' networks exhibited characteristic

small-world organization (high clustering combined with high global

efficiency). Hence, despite the clinical differences, global network

topological measures were conserved in KOA patients when contra-

sting to HC.

3.3 | Disruption of hub organization in OA patients

As previous research in diverse clinical conditions has demonstrated

that even though global properties of a network may be preserved,

nodal properties are reorganize (Achard et al., 2012), we queried if

local level disruptions were present in OA patients. We calculated hub

disruption indices, a metric that allows to summarize and visualize the

pattern of nodal abnormalities. Figure 2a illustrates the results of this

metric at group level for degree; rank order for nodal degree is

disrupted, with some nodes showing abnormal decrease and others

abnormal increase in degree properties. This disruption pattern is

summarized by the gradient of a straight line fitted to the data (KD =

−0.18; p < .001). Other topological measures exhibited similar results

for group-averaged maps (Figure S2). Next, we assessed hub disrup-

tion at an individual level, for all our subjects; Figure 2b shows

between-group differences (HC; OA) of the individually estimated

indices; these were statistically significant (p < .001) at 5% link density

networks, and this result was further validated across other graph

connection densities (Figure S3). The four hub disruption indices were

significantly correlated with each other, and the strength of correla-

tion was higher overall in HCs than in KOA patients (Figure 2c).

We then assessed the influence of regional perturbations to the

magnitude of the disruption indices. At 5% link density networks, indi-

vidual K values were recomputed after random removal of 80% of the

nodes (K00), and this process repeated 100 times. Mean K00 was signifi-

cantly correlated with K across all topology measures (p < .002;

r values: .58–.81) (Figure S4). These results imply rank order disrup-

tion permeates the whole brain network and is not exclusively a prod-

uct of specific regional perturbations.

3.4 | Hub disruption indices do not strongly
associate with clinical properties of OA

Following previous research, where key clinical properties of a dis-

ease were reflected in the hub disruption indices (De Pauw

et al., 2020; Itahashi et al., 2014), we studied the relationship

TABLE 1 Demographic and clinical
characteristics of osteoarthritis patients
(discovery group) and controls. To
identify demographic difference between
groups ANOVA and t tests were
performed for continuous data. Chi-
square tests were performed for
categorical data

Controls (n = 35) Knee OA (discovery group; n = 46) p-Value

Age (years), mean, SD 59.5 ± 7.91 65.3 ± 7.41 .001**

Sex (female), n, % 20; 57.1% 30; 65.2% .49

BMI (kg/m2), mean, SD 28.2 ± 4.57 30 ± 4.3 .07

Smoking, n, % 7; 20% 4; 8.7% .19

Education, n, % .09

Primary education 20; 57.1% 34; 73.9%

Secondary education 8; 22.9% 8; 17.4%

Postsecondary education 7; 20% 4; 8.7%

Habitation, n, % .78

Alone 6; 17.4% 10; 21.7%

Cohabitation 29; 82.8% 36; 78.3%

Marital status, n, % .28

Married 26; 74.3% 30; 65.2%

Never married 3; 8.6% 3; 6.5%

Divorced 2; 5.7% 4; 8.7%

Widowed 4; 11.4% 9; 19.6%

Note: p < .01.

Abbreviations: ANOVA, analysis of variable; BMI, body mass index; OA, osteoarthritis.
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between K indices and numerous clinical properties of the disease:

pain intensity and quality, anxiety and depression, pain cat-

astrophizing, disability, and motor skill tests. We calculated

Pearson's partial correlations, controlling for age and sex. As

shown in Figure S5, only KCC presented a significant association

with pain catastrophizing (r = .3, p = .043) and KOOS symptoms

subscale (r = .33, p = .025); however, these did not survive FDR

correction for multiple comparisons (at p = .05).

TABLE 2 Demographic and clinical characteristics of osteoarthritis patients: discovery and testing groups

Knee OA (discovery

group; n = 46)

Knee OA (testing

group; n = 45) p-Value

Hip OA (testing

group; n = 23) p-Value

Age (years), mean, SD 65.3 ± 7.41 65.78 ± 5.6 .75 59.5 ± 7.41 .007*

Sex (female), n, % 30; 65.2% 38; 84% .035* 8; 40% .008*

BMI (kg/m2), mean, SD 30 ± 4.3 30.87 ± 5.54 .41 28.8 ± 3.36 .08

Education, n, % .15 .76

Primary education 34; 73.9% 38; 84.4% 14; 70%

Secondary education 8; 17.4% 6; 13.3% 4; 20%

Postsecondary education 4; 8.7% 1; 2.2% 2; 10%

Smoking, n, % 4; 8.7% 3; 6.7% .71 2; 8.7% 1.0

Habitation, n, % .59 .52

Alone 10; 21.7% 7; 15.6% 3; 13%

Cohabitation 36; 78.3% 38; 84.4% 20; 90%

Marital status, n, % .19 .57

Married 30; 65.2% 35; 77.8% 16; 70%

Never married 3; 6.5% 2; 4.4% 2; 8.7%

Divorced 4; 8.7% 3; 6.7% 2; 8.7%

Widowed 9; 19.6% 5; 11.1% 3; 13%

NRS, mean, SD 6.48 ± 1.42 6.8 ± 1.93 .37 6.2 ± 1.59 .21

DN4, mean, SD 2.7 ± 2.26 2.9 ± 2.15 .55 1.82 ± 1.49 .025*

HADS_D, mean, SD 7.9 ± 3.93 6.7 ± 4.33 .15 5.8 ± 4.45 .46

HADS_A, mean, SD 8.6 ± 4.07 9 ± 5.71 .71 6.5 ± 4.19 .07

HOOS_S, mean, SD 60.5 ± 19.31 61.9 ± 21.8 .74 50 ± 16.02 .023*

HOOS_P, mean, SD 63.6 ± 16.52 64.2 ± 16.43 .87 55 ± 17.75 .063

HOOS_ADL, mean, SD 61.4 ± 15.84 64.4 ± 17.54 .38 57.9 ± 18.3 .15

HOOS_SR, mean, SD 91.5 ± 17.63 91.6 ± 15.75 .97 83.15 ± 19 .054

HOOS_QL, mean, SD 78.6 ± 16.37 80 ± 17.46 .68 70.6 ± 20.4 .051

PCS, mean, SD 19.1 ± 12.33 23.3 ± 15.75 .15 18.1 ± 11.01 .16

Pain duration (years), mean, SD 6.8 ± 5.45 8.5 ± 6.44 .61 5.03 ± 4.2 .021*

Radiographic KLS, n, % .33 <.001*

Grade 1 1; 2.2% — —

Grade 2 12; 26.1% 9; 20% —

Grade 3 21; 45.7% 22; 48.9% 5; 21.7%

Grade 4 12; 26.1% 14; 31.1% 18; 72.2%

STUG, mean, SD 13.12 ± 3.93 13.9 ± 4.8 .41 14.26 ± 4.46 .77

6MWT, mean, SD 257.8 ± 75.5 272.4 ± 68.93 .33 271.7 ± 99 .9

*p<.05.

Abbreviations: 6MWT, 6-min walking test; ADL, activities of daily living; ANOVA, analysis of variable; BMI, body mass index; DN4, Douleur Neuropathique

en 4 questions; HADS, Hospital anxiety and Depression Scale; HOA, hip OA; HOOS, Hip Injury and Osteoarthritis Outcome Score; KL, Kellgren–Lawrence

scale; KOA, knee OA; KOOS, Knee injury and Osteoarthritis Outcome Score; NRS, numeric pain rating; OA, osteoarthritis; PCS, Pain Catastrophizing Scale;

QoL, quality of life; SR, sports and recreation; STUG, stand up and go test.

Note: p-Values represent statistical tests between KOA discovery groups and the holdout testing samples; KOA testing sample showed a significantly

higher number of females, no other differences were captured; HOA group was significantly different regarding age, gender, DN4 scale, pain duration, and

radiographic severity (KLS). ANOVA and t tests were performed for continuous data. Chi-square tests were performed for categorical data.
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F IGURE 2 Disruption of functional network hub organization in osteoarthritis (OA) patients. (a) Group hub disruption index calculation for
degree (KD) at 5% link density: for each node (256 regions), the mean degree in the control group (x-axis) is plotted against the mean nodal
difference between groups (KOA—control) (y-axis). Red dots represent nodes that are non-hubs in controls but show an abnormal increase in

degree in KOA patients: precentral and postcentral gyrus; filled blue dots represent nodes that are typically hubs in healthy controls and show a
reduction in degree for KOA: insula; paracingulate gyrus; opercular cortex. The hub disruption index corresponds to the slope of the line fitted to
the data (red line), KD = −0.18, p < .001. Insert shows individual KD values. On the right, brain graphical representation of the difference in mean
degree between KOA and controls, top 10% most different regions of interest (ROIs) are depicted, red denotes abnormally increased degree and
blue abnormally decreased degree in KOA compared to healthy controls. (c) Boxplots of the subject-wise estimated hub disruption indices for the
control group (blue) and KOA (red) at 5% link density. Between-group differences in KD, KBC, KE, and KCC were deemed significant by an
ANCOVA (p < .001), while controlling for age and gender. Corresponding results for the same measures different graph connection densities are
shown in Figure S2. (d) The four hub disruption indices here significantly correlated with each other (Person's r), and the strength of correlation
was overall higher in healthy controls than in KOA patients. ***p < .001; **p < .01; HC, healthy control; KOA, knee osteoarthritis
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3.5 | Localized hub topology alterations in OA and
its relationship with clinical endpoints

To better characterize the particular patterns underlying global

changes rendered in the K metrics, we explored changes at a nodal

level by selecting degree, which is the simplest and most commonly

used means of identifying hubs (Power, Schlaggar, Lessov-

Schlaggar, & Petersen, 2013) and upon which many other graph

properties are based. We started by identifying nodes displaying

between group degree differences greater than ±2 SD (Figure 3a;

Table 3), hereby categorized as top disrupted nodes. Statistical sig-

nificance of the differences was analyzed with permutational test-

ing. Moreover, significant differences were validated in a subset if

nodes in the knee and hip holdout samples (Figure 3b; Table 3): two

nodes localized in the insular cortex and one node located in the

postcentral gyrus showed consistent loss of hubness in KOA

patients; abnormally increased hubness was reliably observed in the

precentral gyrus and postcentral gyrus (both nodes assigned to the

sensorimotor [SM] network) in KOA/ HOA and temporal fusiform/

parahippocampal gyrus in KOA patients compared to HC. Hence,

there was a gain in degree in primary motor and sensory nodes that

was accompanied by a loss of degree in characteristic associative

regions in KOA.

Given the consistent disruption of nodal topology, we examined

if hubness changes in these regions reflected clinical properties of

KOA. Hierarchical multiple regression models were built for each clini-

cal variable of interest (i.e., pain duration; pain intensity; HADS anxi-

ety; HADS depression; PCS; KLS; 6MWT; TUG; DN4; and KOOS

subscales). Two models yielded statistical significance: worse ratings

in KOOS/Sports and recreation subscale was related to loss of

hubness in the postcentral gyrus (F(46,44) = 6.98, Adj R2 = .11,

p = .001; sβ = −.65); worse scores in TUG were related also to loss of

hubness in these regions (F(46,45) = 6.42, Adj R2 = .1, p = .014; sβ =

−.2). These associations were not validated in the KOA hold out sam-

ple (linear regression for selected nodes: KOOS/SR: F(45,43) = 0.2,

p = .65; TUG: F(45,43) = 0.4, p = .56), and were not tested in the HOA

sample (as the identified regions were not validated in the KOA

sample).

F IGURE 3 Hub topology is altered in knee OA (KOA): differences in hub status between osteoarthritis (OA) patients and healthy controls.
(a) Mean nodal difference between groups (KOA—control), organized by score and thresholded at ±2 SD (gray lines) from the mean difference (red
dots) and graphic representation of selected nodes. (b) Validation of nodal disruption in KOA hold out sample: 6 out of 11 regions were validated:
sensory-motor regions and parahippocampal gyrus present a significant degree gain and insula/operculum, normal hub nodes, show an abnormal
reduction of degree in KOA patients. (c) Hip OA group, validates uniquely the increase in degree for S1 and parahippocampal gyrus. FP,
frontoparietal cortex; DMN, default mode network; ROI, region of interest; S1, primary somatosensory cortex; SM, sensory-motor cortex.
*p < .05, permutational test
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3.6 | Whole brain distributed changes in degree
predict pain intensity in KOA

Given that the top disrupted nodes partially explained only two

clinical properties of the disease, that the association was weak

and did not generalize and, moreover, given that KD permeates the

whole brain network, we hypothesized that smaller, distributed

changes in nodal reorganization could explain clinical properties of

OA. We limited the analysis only to clinical pain intensity (NRS

scale); we applied a linear regression using all 256 nodal degree

properties as predictors; to remove predictors with low impact to

the outcome while improving generalization, we used an elastic net

regularized regression. As shown in Figure 4a,b, the combination of

12 brain nodal degree properties, both with increased (i.e., inferior

temporal gyrus; paracingulate cortex; insula; lateral occipital cor-

tex) and decreased degree (i.e., putamen; operculum; middle fron-

tal gyrus; parahippocampus) were strong predictors of pain

intensity in KOA (Figure 4c predicted/real NRS Pearson's R = .83);

this result was validated in the KOA hold out sample (predicted/

real NRS Pearson's R = .57), as shown in Figure 4d. and replicated

in HOA (predicted/real NRS Pearson's R = .93), Figure 4e. Thus, we

show that small, distributed changes in network information-

sharing map pain intensity in KOA, and this result is valid and gen-

eralizes to HOA.

3.7 | Modular reorganization affects mainly
regions classified in the frontoparietal and cingulo-
opercular networks

To study brain network reorganization at an intermediate level, we

evaluated modularity. Modularity assesses how well a network can be

divided into a set of sparsely interconnected subnetworks or modules.

We hypothesized that despite the fact that global modularity (Q) is

not different between groups (Figure S1); the modular structure could

be perturbed in OA, with regard to the identity of nodes making up

the different modules.

Closely following methods recently described (Mano et al., 2018),

we estimated a modularity consensus or AM for each group (OA, HC),

and computed the difference between group matrices, generating the

agreement difference matrix (Figure 5a). Here, each entry takes a

value from 1 (red), to −1 (blue). Large positive values identify nodes

that appear more commonly in the same network in pain patients than

in controls and large negative values relate to pairs of nodes that are

less likely to be part of the same network in those patients. Entries

close to zero identify regions that have the same behavior in both

groups. By creating an index per node, the absolute sum of values per

row, defines its overall modular reorganization. Figure 5b represents

the following steps, where statistical significance for modular reorga-

nization indices was tested against a null model. Figure 5c illustrates

TABLE 3 Differences in hub status between OA patients and healthy controls

Difference in mean

degree

Coordinate in MNI

space

Harvard-Oxford cortical and subcortical

structural atlas

Network

assignmenta
p-Valueb 10,000

permutations

(Patient < control)

5.36 (−2, 35, 31) Paracingulate cortex, L (68%) Memory retrieval < .001

3.77 (52, −59, 36) Lateral occipital cortex, R (51%) DMN .027

3.75 (36, 10, 1) Insular cortex, R (47%) CO task control .04c

3.72 (59, −17, 29) Postcentral gyrus, R (45%) Auditory .071

3.35 (37, 1, −4) Insular cortex, R (53%) CO task control .025c

(Patient > control)

4.84 (29, −17, 71) Precentral gyrus, R (35%) SM .006c

4.49 (−38, −27, 69) Postcentral gyrus, L (51%) SM .009c,d

4.45 (−31, −10, −36) Temporal fusiform gyrus, L (32%);

parahippocampal gyrus, L (29%)

Uncertain .01

3.95 (47, 10, 33) Precentral gyrus, R (37%) FP task control .022

3.41 (−23, −30, 72) Postcentral gyrus, L (36%) Uncertain .044

3.35 (33, −12, −34) Temporal fusiform gyrus, R (40%),

parahippocampal gyrus R (23%)

Uncertain .026c,d

Abbreviations: CO, cingulo-opercular; DMN, default mode network; FP, frontoparietal; MNI, Montreal Neurological Institute; OA, osteoarthritis; SM,

sensory-motor.

Note: Regions identified in Figure 3. Peak coordinates (x,y,z) are displayed according to MNI atlas, labels accordingly to the Oxford-Harvard Structural

Cortical Atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).
aNetwork assignment in accordance with Figure 3.
bStatistical significance of difference was tested under 10,000 permutational tests.
cNodal differences were further validated in the KOA holdout sample at p<0.05.
dHOA group at p < .05 (Figure 3).
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the regions after thresholding at p-value of .01. Nodes showing larger

modular reorganization were located mainly in the middle frontal

gyrus, part of the frontal–parietal task control network. Supramarginal

gyrus, angular gyrus and regions located at the cingulate cortex, insula

and operculum were also identified. When validating our findings in

the KOA and HOA holdout groups, regions located in the

frontoparietal and cingulo-opercular network were validated (Table 4).

4 | DISCUSSION

Using a large sample of OA patients, together with a robust methodol-

ogy, we sought to study brain functional network properties and their

relation to the clinical properties of the disease. We demonstrate for

the first time that (a) OA patients have a global reorganization of

nodal centrality properties while preserving network global topology,

as captured by the hub disruption indices; (b) at a finer scale, we could

identify a shift in the hierarchy of hub nodes. Primary sensory, motor,

and parahippocampal regions become hubs; there is a large difference

in connectivity between healthy subjects and OA patients, where

these regions show high connectivity in KOA. On the other hand, the

insula, a multimodal association area loses its centrality properties in

KOA. (c) At a subnetwork, or community level, we showed that while

brain networks can be equally well decomposed, the modular identity

of multiple regions is rearranged in OA, in particular middle frontal

gyrus, insula, and cingulate cortex. Finally, (d) we found that the defin-

ing feature of OA, pain intensity, is related to the interrelationship of

the nodal degree of multiple brain regions in KOA and this result gen-

eralized to HOA.

4.1 | Global topological properties

Global topological network properties were conserved in OA patients,

as observed in earlier studies of chronic pain (De Pauw et al., 2020;

Mansour et al., 2016). As Achard et al. (2012) expound, given that

human brain networks have qualitatively similar global properties to

those of other small world networks (Eguíluz, Chialvo, Cecchi, Baliki, &

Apkarian, 2005), the preservation of these properties even in disease

is expected. As long as the general architecture of the network is

F IGURE 4 Multinodal distributed degree properties predict pain intensity numeric pain rating (NRS) in osteoarthritis (OA) patients.
(a) Graphical representation of the linear regression model using Elastic net regularization and variable selection with penalty weight (α) of .5 and
regularization parameter (λ) choice via a 10-fold cross validation. Brain nodes depicted correspond to regions predicting pain intensity; node size
reflects the weight (B-coefficients) in the regression model. This is also illustrated in (b) the majority of nodes has regression coefficients set to
zero, indicating that the corresponding variables are not contributing to the model. Nonzero regression coefficients identify the predictive
features and indicate the weight and direction of degree change in relation to the response variable: that is, higher levels of pain (NRS) relate with
lower degree in parahipoccampal gyrus, putamen, and superior temporal gyrus and higher degree in paracingulate cortex and inferior temporal
gyrus. (c) Features selected in the elastic net regression predicted the magnitude of response and (d) validate in the hold out knee OA (KOA) and
(e) hip OA samples: high correlation value between predicted and actual NRS scores in the KOA discovery group (Pearson's r = .84, p < .001) KOA
holdout testing group (r = .57, p < .001) and HOA holdout testing group (r = .92, p < .001)
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preserved, its global topological properties can be conserved, even

when the system undergoes large changes.

4.2 | Hub disruption indices

Consistent with the latter concept, we found local disruption in

the order of importance of cortical nodes, calculated globally as

hub disruption indices (K), both at the group and individual level.

The local nodal connectivity properties counterbalances the

increases and decreases throughout the brain resulting in an over-

all shift (K), while the overall mean property remains invariant

(Achard et al., 2012). Interestingly, the magnitude of this disrup-

tion, about 20% when compared to the normative state, is similar

to that seen in other chronic pain conditions (Mansour

et al., 2016). In comatose patients, this shift is much larger (80%)

(Achard et al., 2012) reflecting a more dramatic rebalancing of local

connectivity.

F IGURE 5 Modular reorganization in osteoarthritis (OA) involves predominantly nodes assigned the frontoparietal and cingulo-opercular task
control networks. (a) Agreement difference matrix obtained from the difference between the modular agreement matrix from OA and control
groups. Positive (red) values reflect pairs of nodes that are estimated to appear more commonly in the same module in OA patients, and negative
(blue) values represent pairs of nodes that are estimated to appear less commonly in the same module in OA. White value represents regions of
interest (ROIs) that has the same behavior in both groups. (b) Blue line shows overall modular reorganization for each node as the sum of both

positive and negative values for each node (sum of absolute value per row in (a)), meaning the largest value, the greater reorganization. To
statistically evaluate these values, we performed a permutation test of sum reorganization estimation (null model, gray color), yielding one-side p-
values across all ROIs. (c) Representation of statistically significant nodes showing modular reorganization at a threshold of p < .01; size reflects
magnitude of the absolute agreement difference
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4.3 | Localized hub topology alterations

Although K indices were statistically significant in our discovery group,

when testing across multiple link densities in our hold out sample

(KOA and HOA), only centrality properties validated. Previous data

showed regions which express aspects of node centrality (e.g., degree,

larger number of edges), defined as hubs, tend to be more vulnerable

to local perturbations (Stam, 2014). Remarkably, when we studied the

nodal disruption profile at a finer-grained level, we observed that the

reduction in functional connectivity happened at the insula, a high-

order associative area. On the other hand, there was an increased

centrality at the somatosensory cortex (M1/S1) and right fusiform

gyrus/parahippocampal gyrus, the latter an area previously identified

to predict drug analgesia in OA (Tétreault et al., 2016). This phenome-

non, a selective loss of connectivity in highly central hub nodes

accompanied with gain in degree in peripheral nodes seems to be a

consistent finding in network studies of multiple neurological disor-

ders (Crossley et al., 2014; Stam, 2014). An explanatory theory is pro-

vided by Stam (2014): in an initial phase of disease there is a rerouting

of traffic from failing nodes to higher hierarchical nodes, which in time

become overloaded. Eventually, in the chronic phase, peripheral (mini-

mally connected) nodes become hubs, thus compensating for the

overload of the failing hubs. It is not clear the extent to which our cur-

rent results support this concept. All nodes that shifted their hubness

are brain regions most likely involved in the OA pain state. It is possi-

ble that observed response is maladaptive, according to the Stam the-

ory, where insula connectivity changes secondarily control rerouting

of information and outgrowth of new connections to S1/M1. Alterna-

tively, the decreased connectivity of the insula together with

increased connectivity of S1/M1 and parahippocampus can reflect a

coping process, diminishing the influence of the pain in the cortex,

and increasing attention to SM control. At this point, we do not know

the specific mechanisms or direction of influence regarding the

observed shifts hub properties.

Although we were able to reliably isolate specific patterns under-

lying network disruption, there was an important finding that deserves

further discussion: as also seen before (Mansour et al., 2016), by

recalculating the K indices using only 20% of the nodes (randomly

over multiple trials), we showed that nodal rank order disruption

reflects altered connectivity that permeates the whole brain and is

not merely driven by changes to specific regions. Most likely this is a

reflection of the extent of stress that living with OA imposes on infor-

mation processing throughout the brain (an overall decrease in high

connectivity compensated by increase in low connectivity regions,

diminishing the ability of information sharing, and thus the efficiency

of cognitive processing).

4.4 | Modular reorganization

Modular reorganization of brain networks allows us to evaluate net-

work architecture at an intermediate level of organization, between

global and local properties. In the past our group evaluated module

allegiance (probability of a given node to be located in the same func-

tional community of HC) in different chronic pain conditions, identify-

ing the insular cortex and lateral parietal cortex (part of the SM

network and DMN) as showing the largest variability in community

membership. Mano et al., applying the same analytical approach in

chronic back pain patients as we do here, identified mainly nodes

located in the SM cortex (Mano et al., 2018). In our dataset, changes

TABLE 4 Brain regions showing modular reorganization after permutational-based analysis against a random model, at a cut-off threshold
of p < .01

Absolute agreement

difference (+/−)
Coordinate in MNI

space

Harvard-Oxford cortical and subcortical

structural atlas

Network

assignmenta
p-Valueb 1,000

permutations

23.28 (10.27, −13.01) (44, −53, 47) Angular gyrus, R (40%) FP task control <.001

26.25 (12.84, −13.39) (32, 14, 56) Middle frontal gyrus, R (42%) FP task control <.001c,d

23.35 (10.14, −13.21) (55, −44, 37) Supramarginal gyrus, R (43%) Salience <.001

21.45 (10.59, −10.87) (48, 25, 27) Middle frontal gyrus, R (39%) FP task control .002

24.31 (10.56, −13.76) (39, 18, 39) Middle frontal gyrus, R (50%) FP task control .004b

17.15 (8.14, −9.01) (−60, −25, 14) Parietal operculum cortex, L (35%) Auditory .004

16.46 (6.97, −9.48) (−5, −18, 34) Cingulate gyrus, L (29%) CO task control .006c

16.35 (7.10, −9.25) (−34, 3, 4) Insular cortex, L (4%) CO task control .007b

19.42 (8.28, −11.15) (47, −50, 29) Angular gyrus, R (56%) Default mode .009

Note: Absolute agreement difference (average of absolute value per node) and its decomposition into positive and negative contributory factors are listed

on the first column. Nodes are labeled with the probabilistic Harvard-Oxford cortical and subcortical structural atlas, using peak coordinate for each ROI.

Abbreviations: CO, cingulo-opercular; DMN, default mode network; FP, frontoparietal; HOA, hip OA; KOA, knee OA; MNI, Montreal Neurological

Institute; OA, osteoarthritis.
aNetwork assignment in accordance with Figure 5.
bp-Values are one-sided and calculated after randomly permutating participants over 1,000 iterations and generating a null model for reorganization

estimates (agreement difference matrix).
cNodal differences were further validated in the KOA holdout sample.
dHOA group at p < .05 (Table S1).
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in modular identity were seen in the middle frontal gyrus, insula, and

cingulate cortex, part of frontoparietal and cingulo-opercular net-

works (validated in KOA and/or HOA) (Power et al., 2011). Why

these regions are inconsistent between studies is not obvious. The

rerouting of nodal information should affect the hierarchical modu-

lar organization of a network; thus, it is not surprising that the insu-

lar cortex shows modular reorganization. Middle frontal gyrus, part

of the frontoparietal network, is highly related to task-control, serv-

ing to initiate new task states by flexibly interacting with other con-

trol and processing networks (Marek & Dosenbach, 2018). Still, the

across study variability of this outcome raises issues as to behavioral

and physiological parameters that control modular reorganization,

and future studies are needed to better clarify underling

mechanisms.

4.5 | Relationship between graph indices and OA
clinical properties

In our study there was no strong association between K indices and

clinical variables, in contrast to previous reports, where the hub dis-

ruption indices in chronic pain were related to pain intensity (Crossley

et al., 2014; Mansour et al., 2016) or to other clinical key properties of

disease (De Pauw et al., 2020). In another study, we also showed that

for low back pain associated with disk herniation, KD association with

pain intensity was limited to males with high education (Huang

et al., 2019). Thus, there are across study variations in the extent to

which K indices relate to clinical parameters. Given that OA is a het-

erogeneous pathology with multiple clinical phenotypes (Deveza

et al., 2019), it is likely that subgrouping patients with more in-depth

phenotyping could shed light into the relationship between K indices

and clinical parameters.

When examining brain nodal degree properties, we could identify

a set of nodes and their interrelationships reflecting OA pain intensity.

This result was validated in our KOA holdout sample and generalized

to the HOA sample. Regions in this model were located both in corti-

cal and subcortical areas, across multiple functional networks. These

results are consistent with our recent observation regarding brain

structural properties and their relationship with clinical pain in OA,

where we observed distributed regional changes, related in the latter

case to the neuropathic pain in OA (Barroso et al., 2020). The causality

of this relationship remains unclear, yet we showed that the distrib-

uted set of nodes and their information sharing with the rest of the

brain relates to OA pain. If the OA pain is presumed to be dominantly

reflecting nociceptive signals from the injured joint, then one would

expect to observe a more circumscribed set of nodes reflecting

related pain perception, and perhaps primarily the insula and S1

regions, according to prevailing concepts in the field (Malfait &

Schnitzer, 2013). Our results instead suggest that distributed circuits

throughout the brain contribute to OA pain and corroborate previous

research showing OA pain may be better associated with brain

regions involved in emotional and cognitive processing (Kulkarni

et al., 2007; Parks et al., 2011).

4.6 | Limitations

Some important limitations of the present study should be acknowl-

edged. First, we use a single parcellation scheme to study nodal func-

tional connectivity (Power et al., 2011). The hub disruption indices are

known to be resilient to different parcellation schemes (Achard

et al., 2012; Mansour et al., 2016); however, nodal graph properties

are sensitive to distinct parcellations schemes, which could account

for differences across studies (Fornito, Zalesky, & Bullmore, 2010).

Another important technical limitation is the network link

thresholding, a necessary step to use binary graphs. There is no cur-

rent consensus on what threshold to use. Although global properties

and graph disruption indices were stable across several correlation

thresholds, caution should be used when interpreting results from

binary graph models (Garrison, Scheinost, Finn, Shen, &

Constable, 2015). In the modularity analysis, the choice of parameters

for coupling strength and resolution {ω, γ} is nontrivial, and there is no

current consensus (Sporns & Betzel, 2016). Finally, it is important to

restate that since the control group was not large enough to be

divided, it was used both in the discovery and validation analysis,

therefore introducing some uncontrolled bias. Finally, the HOA group

was small relative to our KOA group; thus, all HOA analyses were lim-

ited for validating/generalizing results obtained in KOA.

5 | CONCLUSIONS

We demonstrated that OA pain is associated both with the disruption

of whole-brain and local functional connectivity. Although major nodal

connectivity changes were identified in the S1/M1 regions, para-

hippocampal gyrus and the insula, the functional reorganization

seemed to have propagated and eventually percolated throughout the

whole brain, possibly reflecting the cost of the disease on information

sharing across the brain. Pain intensity, a primary clinical concern in

OA, was localized to distributed nodal functional connectivity changes

in KOA, and this result strongly generalized for pain intensity in HOA.

Therefore, our results dissociate the major hub disruptions from net-

work connectivity related to OA pain, challenging the extent of

dependence of OA pain on nociceptive signaling.
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