631 research outputs found

    Primary care management for optimized antithrombotic treatment [PICANT]: study protocol for a cluster-randomized controlled trial

    Get PDF
    Background: Antithrombotic treatment is a continuous therapy that is often performed in general practice and requires careful safety management. The aim of this study is to investigate whether a best practice model that applies major elements of case management, including patient education, can improve antithrombotic management in primary health care in terms of reducing major thromboembolic and bleeding events. Methods: This 24-month cluster-randomized trial will be performed in 690 adult patients from 46 practices. The trial intervention will be a complex intervention involving general practitioners, health care assistants and patients with an indication for oral anticoagulation. To assess adherence to medication and symptoms in patients, as well as to detect complications early, health care assistants will be trained in case management and will use the Coagulation-Monitoring-List (Co-MoL) to regularly monitor patients. Patients will receive information (leaflets and a video), treatment monitoring via the Co-MoL and be motivated to perform self-management. Patients in the control group will continue to receive treatment-as-usual from their general practitioners. The primary endpoint is the combined endpoint of all thromboembolic events requiring hospitalization, and all major bleeding complications. Secondary endpoints are mortality, hospitalization, strokes, major bleeding and thromboembolic complications, severe treatment interactions, the number of adverse events, quality of anticoagulation, health-related quality of life and costs. Further secondary objectives will be investigated to explain the mechanism by which the intervention is effective: patients' assessment of chronic illness care, self-reported adherence to medication, general practitioners' and health care assistants' knowledge, patients' knowledge and satisfaction with shared decision making. Practice recruitment is expected to take place between July and December 2012. Recruitment of eligible patients will start in July 2012. Assessment will occur at three time points: baseline (T0), follow-up after 12 (T1) and after 24 months (T2). Discussion: The efficacy and effectiveness of individual elements of the intervention, such as antithrombotic interventions, self-management concepts in orally anticoagulated patients and the methodological tool, case-management, have already been extensively demonstrated. This project foresees the combination of several proven instruments, as a result of which we expect to profit from a reduction in the major complications associated with antithrombotic treatment

    Self-Dual Bending Theory for Vesicles

    Full text link
    We present a self-dual bending theory that may enable a better understanding of highly nonlinear global behavior observed in biological vesicles. Adopting this topological approach for spherical vesicles of revolution allows us to describe them as frustrated sine-Gordon kinks. Finally, to illustrate an application of our results, we consider a spherical vesicle globally distorted by two polar latex beads.Comment: 10 pages, 3 figures, LaTeX2e+IOPar

    Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.

    Get PDF
    Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying genetic causes of obesity in humans

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles.

    Get PDF
    Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF

    Search for Gravitational Wave Bursts from Six Magnetars

    Get PDF
    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom

    Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020-2030

    Get PDF
    Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making

    Are we HER-ting for innovation in neoadjuvant breast cancer trial design?

    Get PDF
    Through the use of surrogate markers of efficacy, neoadjuvant studies may facilitate the implementation of new treatments into clinical practice. However, disease-free survival is the current standard outcome endpoint for registration of a novel treatment. The coupling of smaller neoadjuvant 'proof of principle' studies with larger adjuvant registration trials offers the promise of speeding up the time to market of new therapies. Clever new designs, such as the 'biological window' and 'learn on the way', can provide valuable insight regarding mechanisms of action and resistance of these novel drugs by identifying patients who are most likely to respond to a novel therapy early in the drug development process. Using the ongoing neoadjuvant trials with HER2 (human epidermal growth factor receptor 2)-directed therapy as a paradigm, this article discusses recent innovations in study design and the challenges of conducting translational research in the neoadjuvant setting

    Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

    Get PDF
    Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade

    A randomized trial of effects of health risk appraisal combined with group sessions or home visits on preventive behaviors in older adults

    Full text link
    Background. To explore effects of a health risk appraisal for older people (HRA-O) program with reinforcement, we conducted a randomized controlled trial in 21 general practices in Hamburg, Germany. Methods. Overall, 2,580 older patients of 14 general practitioners trained in reinforcing recommendations related to HRA-O-identified risk factors were randomized into intervention (n = 878) and control (n = 1,702) groups. Patients (n = 746) of seven additional matched general practitioners who did not receive this training served as a comparison group. Patients allocated to the intervention group, and their general practitioners, received computer-tailored written recommendations, and patients were offered the choice between interdisciplinary group sessions (geriatrician, physiotherapist, social worker, and nutritionist) and home visits (nurse). Results. Among the intervention group, 580 (66%) persons made use of personal reinforcement (group sessions: 503 [87%], home visits: 77 [13%]). At 1-year follow-up, persons in the intervention group had higher use of preventive services (eg, influenza vaccinations, adjusted odds ratio 1.7; 95% confidence interval 1.4-2.1) and more favorable health behavior (eg, high fruit/fiber intake, odds ratio 2.0; 95% confidence interval 1.6-2.6), as compared with controls. Comparisons between intervention and comparison group data revealed similar effects, suggesting that physician training alone had no effect. Subgroup analyses indicated favorable effects for HRA-O with personal reinforcement, but not for HRA-O without reinforcement. Conclusions. HRA-O combined with physician training and personal reinforcement had favorable effects on preventive care use and health behavio
    corecore