105 research outputs found

    The characteristics of the IR emission features in the spectra of Herbig Ae stars: Evidence for chemical evolution

    Get PDF
    Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass and are known to have varying amounts of natal cloud material still present in their direct vicinity. We characterise the IR emission bands, due to fluorescence by PAH molecules, in the spectra of Herbig Ae/Be stars and link observed variations to spatial aspects of the mid-IR emission. We analysed two PAH dominated spectra from a sample of 15 Herbig Ae/Be stars observed with Spitzer and derive profiles of the major PAH bands. The shape and the measured band characteristics show pronounced variations between the two Spitzer spectra. Those variations parallel those found between three ISO spectra of other, well-studied, Herbig Ae/Be stars. The derived profiles are compared to those from a broad sample of sources. The Spitzer and ISO spectra exhibit characteristics commonly interpreted respectively as interstellar matter-like (ISM), non-ISM-like, or a combination of the two. We argue that the PAH emission detected from the sources exhibiting a combination of ISM-like and non-ISM-like characteristics indicates the presence of two dissimilar, spatially separated, PAH families. As the shape of the individual PAH band profiles reflects the composition of the PAH molecules involved, this demonstrates that PAHs in subsequent, evolutionary linked stages of star formation are different from those in the general ISM, implying active chemistry. None of the detected PAH emission can be associated with the (unresolved) disk and is thus associated with the circumstellar cloud. This implies that chemical changes may already occur in the natal cloud and not necessarily in the disk

    Infrared Spectroscopy of the Diffuse Ionized Halo of NGC 891

    Full text link
    We present infrared spectroscopy from the Spitzer Space Telescope at one disk position and two positions at a height of 1 kpc from the disk in the edge-on spiral NGC 891, with the primary goal of studying halo ionization. Our main result is that the [Ne III]/[Ne II] ratio, which provides a measure of the hardness of the ionizing spectrum free from the major problems plaguing optical line ratios, is enhanced in the extraplanar pointings relative to the disk pointing. Using a 2D Monte Carlo-based photo-ionization code which accounts for the effects of radiation field hardening, we find that this trend cannot be reproduced by any plausible photo-ionization model, and that a secondary source of ionization must therefore operate in gaseous halos. We also present the first spectroscopic detections of extraplanar PAH features in an external normal galaxy. If they are in an exponential layer, very rough emission scale-heights of 330-530 pc are implied for the various features. Extinction may be non-negligible in the midplane and reduce these scale-heights significantly. There is little significant variation in the relative emission from the various features between disk and extraplanar environment. Only the 17.4 micron feature is significantly enhanced in the extraplanar gas compared to the other features, possibly indicating a preference for larger PAHs in the halo.Comment: 35 pages in ApJ preprint format, 8 figures, accepted for publication in ApJ. Minor change to Introduction to give appropriate credit to earlier, related wor

    Spitzer detections of new dust components in the outflow of the Red Rectangle

    Full text link
    We present Spitzer high spectral resolution IRS spectroscopy of three positions in the carbon-rich outflow of post-AGB star HD 44179, better known as the Red Rectangle. Surprisingly, the spectra show some strong unknown mid-infrared resonances, in the 13-20 micron range. The shape and position of these resonances varies with position in the nebula, and are not correlated with the PAH features. We conclude these features are due to oxygen-rich minerals, located in a region which is believed to be predominantly carbon-rich. We provide possible explanations for the presence of oxygen-rich dust in the carbon-rich outflows. Simple Mg-Fe-oxides are suggested as carriers of these unidentified features.Comment: accepted by ApJL; 5 pages; 4 figure

    The economic importance of the Belgian ports: Flemish maritime ports, Liège port complex and the port of Brussels – Report 2016

    Get PDF
    This Working Paper analyses the economic importance of the Belgian ports based largely on the annual accounts data for the year 2016. As the years prior to 2016 have been described in earlier papers in the same series, we mainly focus on the figures for 2016 and developments between 2015 and 2016. On the back of strong growth, direct value added in the Belgian ports remained more or less stable in 2016 at around € 18 000 million (current prices) or roughly 4.3% of Belgium’s GDP. Direct value added declined in the Flemish seaports, mainly in the port of Antwerp. Ghent and Zeebrugge could only partly compensate for the fall in Antwerp’s value added, while Ostend showed a small decline itself. The inland ports as a whole grew over the period 2015-2016; the port of Brussels registered a decline and the Liège port complex an increase. Indirect value added is around 82% of the direct figure. After declining from 2012, direct employment in the Belgian ports was more or less stable in 2016 at around 115 000 FTE or approximately 2.8% of Belgium’s total domestic employment. Direct employment in the Flemish seaports increased, mainly in the ports of Zeebrugge, Ghent and Antwerp. Ostend showed a decline in employment. The inland ports recorded lower employment; the port of Brussels registered a decline, as did the Liège port complex. Indirect employment is around 1.2 times the direct figure. Delving deeper into the data and trying to explain the above trends in terms of the structural composition of the Belgian ports shows that all ports are concentrated on a few sectors, and within those sectors often on just a handful of companies. Based on the figures of the traffic, the Flemish ports can be considered as real bridgeheads for trade with the UK. Developments regarding the modalities and consequences of the Brexit therefor should be followed with the greatest attention. Given the existing import and export volumes in terms of tonnage, it seems it will mostly be a challenge in Zeebrugge and to some extent for Antwerp

    The 5.25 & 5.7 μ\mum Astronomical Polycyclic Aromatic Hydrocarbon Emission Features

    Full text link
    Astronomical mid-IR spectra show two minor PAH features at 5.25 and 5.7 μ\mum (1905 and 1754 cm1^{\rm - 1}) that hitherto have been little studied, but contain information about the astronomical PAH population that complements that of the major emission bands. Here we report a study involving both laboratory and theoretical analysis of the fundamentals of PAH spectroscopy that produce features in this region and use these to analyze the astronomical spectra. The ISO SWS spectra of fifteen objects showing these PAH features were considered for this study, of which four have sufficient S/N between 5 and 6 μ\mum to allow for an in-depth analysis. All four astronomical spectra show similar peak positions and profiles. The 5.25 μ\mum feature is peaked and asymmetric, while the 5.7 μ\mum feature is broader and flatter. Detailed analysis of the laboratory spectra and quantum chemical calculations show that the astronomical 5.25 and 5.7 μ\mum bands are a blend of combination, difference and overtone bands primarily involving CH stretching and CH in-plane and CH out-of-plane bending fundamental vibrations. The experimental and computational spectra show that, of all the hydrogen adjacency classes possible on PAHs, solo and duo hydrogens consistently produce prominent bands at the observed positions whereas quartet hydrogens do not. In all, this a study supports the picture that astronomical PAHs are large with compact, regular structures. From the coupling with primarily strong CH out-of-plane bending modes one might surmise that the 5.25 and 5.7 μ\mum bands track the neutral PAH population. However, theory suggests the role of charge in these astronomical bands might also be important.Comment: Accepted ApJ, 40 pages in pre-print, 14 figures, two onlin

    Lack of PAH emission toward low-mass embedded young stellar objects

    Get PDF
    PAHs have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-IR spectroscopic survey of PAH features toward a sample of low-mass embedded YSOs. The aim is to put constraints on the PAH abundance in the embedded phase of star formation using radiative transfer modeling. VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53 sources are presented. Line intensities are compared to recent surveys of Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL are used to model the PAH emission from embedded YSOs consisting of a PMS star with a circumstellar disk embedded in an envelope. The dependence of the PAH feature on PAH abundance, stellar radiation field, inclination and the extinction by the surrounding envelope is studied. The 3.3 micron PAH feature is undetected for the majority of the sample (97%), with typical upper limits of 5E-16 W/m^2. Compact 11.2 micron PAH emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra, for a source that is borderline embedded. For all 12 sources with both VLT and Spitzer spectra, no PAH features are detected in either. In total, PAH features are detected toward at most 1 out of 63 (candidate) embedded protostars (<~ 2%), even lower than observed for class II T Tauri stars with disks (11-14%). Assuming typical class I stellar and envelope parameters, the absence of PAHs emission is most likely explained by the absence of emitting carriers through a PAH abundance at least an order of magnitude lower than in molecular clouds but similar to that found in disks. Thus, most PAHs likely enter the protoplanetary disks frozen out in icy layers on dust grains and/or in coagulated form.Comment: 13 pages, 9 figures, accepted for publication in A&

    Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82

    Get PDF
    We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude that shocks in the outflow regions have no measurable influence on the H_2 emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little variations across the plane, indicating that the dominant stellar population is evolved (5 - 6 Myr) and well distributed. There is a slight increase of the ratio with distance from the galactic plane of M82 which we attribute to a decrease in gas density. Our observations indicate that the star formation rate has decreased significantly in the last 5 Myr. The quantities of dust and molecular gas in the central area of the galaxy argue against starvation and for negative feedback processes, observable through the strong extra-planar outflows.Comment: 15 pages, 12 figures, 3 tables, ApJ, emulateap

    SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    Get PDF
    Aims: We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust species. This allows for the identification of the carriers of the different emission bands. Our fits also constrain the physical properties of different dust species and grain sizes responsible for the observed emission features. Results: In all stars the dust is oxygen-rich: amorphous and crystalline silicate dust species prevail and no features of a carbon-rich component can be found, the exception being EPLyr, where a mixed chemistry of both oxygen- and carbon-rich species is found. Our full spectral fitting indicates a high degree of dust grain processing. The mineralogy of our sample stars shows that the dust is constituted of irregularly shaped and relatively large grains, with typical grain sizes larger than 2 micron. The spectra of nearly all stars show a high degree of crystallinity, where magnesium-rich end members of olivine and pyroxene silicates dominate. Other dust features of e.g. silica or alumina are not present at detectable levels. Temperature estimates from our fitting routine show that a significant fraction of grains must be cool, significantly cooler than the glass temperature. This shows that radial mixing is very efficient is these discs and/or indicates different thermal conditions at grain formation. Our results show that strong grain processing is not limited to young stellar objects and that the physical processes occurring in the discs are very similar to those in protoplanetary discs.Comment: 22pages, 50 figures (in appendix), accepted for A&

    Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths

    Full text link
    We have used different spectroscopic techniques to obtain a consistent quantitative absorption spectrum of a sample of meteoritic nano-diamonds in the wavelength range from the vacuum ultraviolet (0.12 μ\mum) to the far infrared (100 μ\mum). The nano-diamonds have been isolated by a chemical treatment from the Allende meteorite (Braatz et al.2000). Electron energy loss spectroscopy (EELS) extends the optical measurements to higher energies and allows the derivation of the optical constants (n & k) by Kramers-Kronig analysis. The results can be used to restrain observations and to improve current models of the environment where the nano-diamonds are expected to have formed. We also show that the amount of nano-diamond which can be present in space is higher than previously estimated by Lewis et al. (1989).Comment: 11 pages, 7 figure
    corecore