Aims: We investigate the mineralogy and dust processing in the circumbinary
discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER
infrared spectra. Methods: We perform a full spectral fitting to the infrared
spectra using the most recent opacities of amorphous and crystalline dust
species. This allows for the identification of the carriers of the different
emission bands. Our fits also constrain the physical properties of different
dust species and grain sizes responsible for the observed emission features.
Results: In all stars the dust is oxygen-rich: amorphous and crystalline
silicate dust species prevail and no features of a carbon-rich component can be
found, the exception being EPLyr, where a mixed chemistry of both oxygen- and
carbon-rich species is found. Our full spectral fitting indicates a high degree
of dust grain processing. The mineralogy of our sample stars shows that the
dust is constituted of irregularly shaped and relatively large grains, with
typical grain sizes larger than 2 micron. The spectra of nearly all stars show
a high degree of crystallinity, where magnesium-rich end members of olivine and
pyroxene silicates dominate. Other dust features of e.g. silica or alumina are
not present at detectable levels. Temperature estimates from our fitting
routine show that a significant fraction of grains must be cool, significantly
cooler than the glass temperature. This shows that radial mixing is very
efficient is these discs and/or indicates different thermal conditions at grain
formation. Our results show that strong grain processing is not limited to
young stellar objects and that the physical processes occurring in the discs
are very similar to those in protoplanetary discs.Comment: 22pages, 50 figures (in appendix), accepted for A&