129 research outputs found

    Hypertension and diabetes, but not leptin and adiponectin, mediate the relationship between body fat and chronic kidney disease

    Get PDF
    Purpose: Obesity may promote kidney damage through hemodynamic and hormonal effects. We investigated the association between body mass index (BMI), total body fat (TBF) and chronic kidney disease (CKD) and whether hypertension, diabetes, leptin and adiponectin mediated these associations. Methods: In this cross-sectional analysis of the Netherlands Epidemiology of Obesity study, 6671 participants (45–65 y) were included. We defined CKD as eGFR &lt;60 ml/min/1.73 m2 and/or moderately increased albuminuria. The percentage of mediation was calculated using general structural equation modeling, adjusted for potential confounding factors age, sex, smoking, ethnicity, physical activity and Dutch healthy diet index. Results: At baseline mean (SD) age was 56 (6), BMI 26.3 (4.4), 44% men, and 4% had CKD. Higher BMI and TBF were associated with 1.08 (95%CI 1.05; 1.11) and 1.05-fold (95%CI 1.02; 1.08) increased odds of CKD, respectively. As adiponectin was not associated with any of the outcomes, it was not studied further as a mediating factor. The association between BMI and CKD was 8.5% (95%CI 0.5; 16.5) mediated by diabetes and 22.3% (95%CI 7.5; 37.2) by hypertension. In addition, the association between TBF and CKD was 9.6% (95%CI −0.4; 19.6) mediated by diabetes and 22.4% (95%CI 4.2; 40.6) by hypertension. We could not confirm mediation by leptin in the association between BMI and CKD (35.6% [95%CI −18.8; 90.3]), nor between TBF and CKD (59.7% [95%CI −7.1; 126.6]). Conclusion: Our results suggest that the relations between BMI, TBF and CKD are in part mediated by diabetes and hypertension.</p

    Plasma Metabolomics Identifies Markers of Impaired Renal Function: A Meta-analysis of 3089 Persons with Type 2 Diabetes

    Get PDF
    CONTEXT: There is a need for novel biomarkers and better understanding of the pathophysiology of diabetic kidney disease. OBJECTIVE: To investigate associations between plasma metabolites and kidney function in people with type 2 diabetes (T2D). DESIGN: 3089 samples from individuals with T2D, collected between 1999 and 2015, from 5 independent Dutch cohort studies were included. Up to 7 years follow-up was available in 1100 individuals from 2 of the cohorts. MAIN OUTCOME MEASURES: Plasma metabolites (n = 149) were measured by nuclear magnetic resonance spectroscopy. Associations between metabolites and estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), and eGFR slopes were investigated in each study followed by random effect meta-analysis. Adjustments included traditional cardiovascular risk factors and correction for multiple testing. RESULTS: In total, 125 metabolites were significantly associated (PFDR = 1.5×10-32 - 0.046; ÎČ = -11.98-2.17) with eGFR. Inverse associations with eGFR were demonstrated for branched-chain and aromatic amino acids (AAAs), glycoprotein acetyls, triglycerides (TGs), lipids in very low-density lipoproteins (VLDL) subclasses, and fatty acids (PFDR < 0.03). We observed positive associations with cholesterol and phospholipids in high-density lipoproteins (HDL) and apolipoprotein A1 (PFDR < 0.05). Albeit some metabolites were associated with UACR levels (P < 0.05), significance was lost after correction for multiple testing. Tyrosine and HDL-related metabolites were positively associated with eGFR slopes before adjustment for multiple testing (PTyr = 0.003; PHDLrelated < 0.05), but not after. CONCLUSIONS: This study identified metabolites associated with impaired kidney function in T2D, implying involvement of lipid and amino acid metabolism in the pathogenesis. Whether these processes precede or are consequences of renal impairment needs further investigation

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Genome-wide characterization of circulating metabolic biomarkers

    Get PDF
    Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1,2,3,4,5,6,7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8,9,10,11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases

    Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    Background So far, more than 170 loci have been associated with circulating lipid levels through genomewide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60 000 individuals in the discovery stage and ~90 000 samples in the replication stage. Results Our study resu

    Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration.

    Get PDF
    Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    • 

    corecore