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Multi-ancestry sleep-by-SNP interaction analysis in
126,926 individuals reveals lipid loci stratified by
sleep duration
Raymond Noordam et al.#

Both short and long sleep are associated with an adverse lipid profile, likely through different

biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we

conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits

(HDL-c, LDL-c and triglycerides). In the total study sample (discovery+ replication) of

126,926 individuals from 5 different ancestry groups, when considering either long or short

total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci,

and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry

cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL

and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid

levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in trigly-

ceride level. Collectively, these findings contribute to our understanding of the biological

mechanisms involved in sleep-associated adverse lipid profiles.
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Dyslipidemia is defined as abnormalities in one or more
types of lipids, such as high blood LDL-cholesterol (LDL-
c) and triglyceride (TG) concentrations and a low HDL-

cholesterol (HDL-c) concentration. High LDL-c and TG are well-
established modifiable causal risk factors for cardiovascular dis-
ease1–3, and therefore are a primary focus for preventive and
therapeutic interventions. Over 300 genetic loci are identified to
be associated with blood lipid concentrations4–10. Recent studies
showed that only 12.3% of the total variance in lipid concentra-
tion is explained by common single-nucleotide polymorphisms
(SNPs), suggesting additional lipid loci could be uncovered10.
Some of the unexplained heritability may be due to the presence
of gene–environment and gene–gene interactions. Recently, high
levels of physical activity were shown to modify the effects of four
genetic loci on lipid levels11, an additional 18 previously unre-
ported lipid loci were identified when considering interactions
with high alcohol consumption12, and 13 previously unreported
lipid loci were identified when considering interaction with
smoking status13, suggesting that behavioural factors may interact
with genetic loci to influence lipid levels.

Sleep is increasingly recognised as a fundamental behaviour
that influences a wide range of physiological processes14. A large
volume of epidemiological research implicates disturbed sleep in
the pathogenesis of atherosclerosis15, and specifically, both a long
and short sleep duration are associated with an adverse blood
lipid profile16–26. However, it is unknown whether sleep duration
modifies genetic risk factors for adverse blood lipid profiles. We
hypothesise that short and long habitual sleep duration may
modify genetic associations with blood lipid levels. The identifi-
cation of SNPs involved in such interactions will facilitate our
understanding of the biological background of sleep-associated
adverse lipid profiles.

We investigate gene–sleep duration interaction effects on blood
lipid levels as part of the Gene-Lifestyle Interactions Working
Group within the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium27,28. To permit
the detection of both such sleep-duration–SNP interactions and
lipid–SNP associations accounting for total sleep duration, a two
degree of freedom (2df) test that jointly tests the SNP-main and
SNP-interaction effect was applied29. Given that there are dif-
ferences among ancestry groups in sleep behaviours and lipid
levels, analysis of data from cohorts of varying ancestries facilitate
the discovery of robust interactions between genetic loci and sleep
traits. We focus on short total sleep time (STST; defined as the
lower 20% of age- and sex-adjusted sleep duration residuals) and
long total sleep time (LTST; defined as the upper 20% of age- and
sex-adjusted sleep duration residuals) as exposures compared
with the remaining individuals in the study population, given that
each extreme sleep trait are associated with multiple adverse
metabolic and health outcomes15–26,30–34. Within this study, we
report multi-ancestry sleep-by-SNP interaction analyses for blood
lipid levels that successfully identified several previously unre-
ported loci for blood lipid traits.

Results
Study population. Discovery analyses were performed in up to
62,457 individuals (40,041 European-ancestry, 14,908 African-
ancestry, 4460 Hispanic-ancestry, 2379 Asian-ancestry and 669
Brazilian/mixed-ancestry individuals) from 21 studies spanning
five different ancestry groups (Supplementary Tables 1 and 2;
Supplementary Data 1). Of the total discovery analysis, 13,046
(20.9%) individuals were classified as short sleepers and 12,317
(19.7%) individuals as long sleepers. Replication analyses were
performed in up to 64,469 individuals (47,612 European-ancestry,
12,578 Hispanic-ancestry, 3133 Asian-ancestry and 1146 African-

ancestry individuals) from 19 studies spanning four different
ancestry groups (Supplementary Tables 3 and 4; Supplementary
Data 2). Of the total replication analysis, 12,952 (20.1%) indivi-
duals were classified as short sleepers and 12,834 (19.9%) indi-
viduals as long sleepers.

Genome-wide SNP–sleep interaction analyses. An overview of
the multi-ancestry analyses process for both STST and LTST is
presented in Fig. 1. QQ plots of the combined multi-ancestry and
European meta-analysis of the discovery and replication analysis
are presented in Supplementary Figs. 1 and 2. Lambda values
ranged between 1.023 and 1.055 (trans-ancestry meta-analysis)
before the second genomic control and were all 1 after second
genomic control correction. In the combined discovery and
replication meta-analyses comprising all contributing ancestry
groups, we found that many SNPs replicated for the lipid traits
(Pjoint in replication < 0.05 with similar directions of effect as in
the discovery analyses and Pjoint in combined discovery and
replication analysis < 5 × 10−8). Notably, we replicated 2395 and
2576 SNPs for HDL-c, 2012 and 2074 SNPs for LDL-c, and 2643
and 2734 SNPs for TG in the joint model with LTST and STST,
respectively.

Most of the replicated SNPs were mapped to known loci
(Supplementary Data 3 and 4). We looked at the 427 known lipid
SNPs (Supplementary Data 5), but these did not reveal significant
1df interactions with either LTST or STST. In addition, we
identified lead SNPs mapping to previously unreported regions
when considering the joint model with potential interaction for
either STST or LTST (>1Mb distance from known locus).
Ultimately, in the multi-ancestry analysis, we identified 14
previously unreported loci for HDL-c, 12 for LDL-c and 23 ci
for TG (R2 < 0.1; Fig. 2). Of these, seven loci for HDL-c, four loci
for LDL-c and seven loci for TG were identified after considering
an interaction with LTST (Supplementary Data 6). Furthermore, 7
loci for HDL-c, 8 loci for LDL-c and 16 loci for TG were identified
when considering an interaction with STST (Supplementary
Data 7). Importantly, none of these loci for the three lipid traits
identified through LTST were identified in the analyses with STST,
and vice versa. Furthermore, these lipid loci were specific to a
single-lipid trait. Regional plots of the previously unreported loci
from the multi-ancestry analyses are presented in Supplementary
Figs. 3–8. Some of the previously unreported SNPs identified
through modelling a short or long sleep duration interaction (1df)
also showed suggestive evidence of association with lipid levels in
the joint model (2df interaction test). However, this pattern
suggested a main effect that appeared once sleep duration was
adjusted for rather than an effect due to an interaction between
sleep and the SNP (Supplementary Data 6, 7).

Using the R-based VarExp package35, we calculated the
explained variance based on the summary statistics of the
combined discovery and replication analysis. Collectively, pre-
viously unreported lead lipid SNPs identified with LTST
explained 0.97% of the total HDL-c variation, 0.13% of the total
LDL-c variation and 1.51% of the total TG variation. In addition,
the previously unreported SNPs identified with STST explained
1.00% of the total HDL-c variation, 0.38% of the total LDL-c
variation and 4.25% of the total TG variation.

In the analyses restricted to European-ancestry individuals
(overview Supplementary Fig. 9), we identified ten additional
previously unreported loci (seven with LTST and three with
STST; Supplementary Fig. 10), which were not identified in the
multi-ancestry analyses. Of these, we identified four loci for HDL-
c, two loci for LDL-c and one locus for TG with LTST
(Supplementary Data 8). In addition, we identified one locus
for HDL-c and two for TG with STST (Supplementary Data 9).
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Again, we observed no overlapping findings between the two
sleep exposures and the three lipid traits. Regional plots of the
previously unreported loci were presented in Supplementary
Figs. 11–15.

Gene mapping of known and previously unreported loci. Based
on a total of 402 lead SNPs in known and previously unreported
regions for both exposures and the three lipid traits that were
identified using the joint test in the combined sample of discovery
and replication studies, we subsequently explored the extent the
effects were driven by 1df interaction with the sleep exposure trait
being tested29. We corrected the 1df interaction P-value for
multiple testing using the false discovery rate36 considering all
402 lead SNPs for the present investigation, which was equivalent
in our study to a 1df interaction P-value < 5 × 10−4. Overall, in
the multi-ancestry meta-analyses, the previously unreported lipid
loci show clearly stronger interaction with either LTST or STST
than the loci defined as known (Fig. 3). The majority of these

identified lead variants were generally common, with minor allele
frequencies (MAF) mostly > 0.2, and SNP × sleep interaction
effects were not specifically identified in lower frequency SNPs
(e.g., MAF < 0.05).

Out of the seven previously unreported HDL-c loci identified
in the joint model with LTST, six had a 1df interaction P-
valueFDR < 0.05, notably lead SNPs mapped to ATP6V1H,
ARTN2, ATP6V0A4, KIAA0195, MIR331 and MIR4280. Based
on exposure-stratified analyses in the meta-analysis of the
discovery cohorts, we further explored the effect sizes per
exposure group. The lead SNPs that showed significant sleep ×
SNP interaction also showed effect estimates that modestly
differed between LTST exposure groups (Supplementary Data 10).
Interestingly, two lead SNPs near known HDL-c loci showed a
1df interaction P-valueFDR < 0.05, including SNPs near CETP and
LIPC (Supplementary Data 4). Out of the seven previously
unreported HDL-c loci identified in the joint model with STST,
we found six loci with a 1df interaction P-valueFDR < 0.05, notably
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Multi-ancestry replication analyses:

Meta-analysis of Stage 1 and Stage 2

Multi-ancestry analyses:

Replicated SNPs:

HDL-c: 2395 SNPs

LDL-c: 2012 SNPs

TG: 2643 SNPs

Replicated SNPs:

HDL-c: 2576 SNPs

LDL-c: 2074 SNPs

TG: 2734 SNPs

SNPs, known loci:

HDL-c: 68

LDL-c: 53

TG: 47

SNPs, novel loci:

HDL-c: 7

LDL-c: 4

TG: 7

SNPs, known loci:

HDL-c: 81 

LDL-c: 60

TG: 43

SNPs, novel loci:

HDL-c: 7

LDL-c: 8

TG: 16

SNP replicated when: 2df interaction p-values were <0.05 in Stage 2 + <5 × 10–8 in Stage 1 + 2

Independent lead SNPs and gene mapping using FUMA; novel loci > 1 mB from known locus

HDL-c: Nexposed = 13,046 (Ntotal = 62,457)

LDL-c: Nexposed = 12,758 (Ntotal = 61,548)

TG: Nexposed = 12,855(Ntotal = 61,990)

HDL-c: Nexposed = 12,834 (Ntotal = 64,469) HDL-c: Nexposed = 12,952 (Ntotal = 64,469)

LDL-c: Nexposed = 9944 (Ntotal = 50,122) LDL-c: Nexposed = 10,077 (Ntotal = 50,122)

TG: Nexposed = 8220 (Ntotal = 41,474) TG: Nexposed = 8351 (Ntotal = 41,474)

Fig. 1 Project overview and SNP selection in the multi-ancestry analyses. Project overview of the multi-ancestry analyses of how the new lipid loci were
identified in the present project. Replicated variants had to have 2df interaction test P-values of Stage 1 < 5 × 10−7, Stage 2 < 0.05 with a similar direction of
effect as in the discovery meta-analysis, and Stage 1+ 2 < 5 × 10−8
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lead SNPs mapped to S1000A6, SMARCAL1, RGMA, EPHB1,
FHIT and CLEC2D. Again, their effect estimates differed between
the exposure groups in the discovery multi-ancestry meta-
analysis (Supplementary Data 11; Fig. 4). Some lead SNPs near
known HDL-c loci showed evidence of a 1df interaction with
STST (e.g., MADD and LPL; P-valueFDR < 0.05).

For all four lead SNPs in previously unreported regions
associated with LDL-c when considering LTST, we observed a 1df
interaction P-valueFDR < 0.05; notably, lead SNPs mapped to
IGFBP7-AS1, FOXD2, NR5A2 and BOC. One locus that mapped
within a 1Mb physical distance from known LDL-c locus
(PCSK9) showed 1df interaction with LTST (Supplementary
Data 4). Similarly, all eight lead SNPs in previously unreported

regions associated with LDL-c when considering STST, had a 1df
interaction P-valueFDR < 0.05; notably, lead SNPs mapped to
MAGI2, METRNL, VAT1L, FUT10, SNX29, ZNF827, GPRC5C
and KLHL31. In addition, of the known LDL-c loci, lead SNPs
mapped within a physical distance of 1 Mb of APOB and
SLC22A1 showed a 1df interaction P-valueFDR < 0.05 (Supple-
mentary Data 5). For both analyses, we observed that effect
estimates differed between the LTST and STST exposure groups
in the multi-ancestry discovery analysis (Supplementary Data 10
and 11; Fig. 4).

All seven SNPs in previously unreported regions associated
with TG when considering LTST, had a 1df interaction P-
valueFDR < 0.05; notably, lead SNPs mapped to RNU5F-1,
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SULT2A1, MIR4790, PDE3A, SLC35F3, ADAMTS17 and
OSBPL10. In addition, we found some evidence for long
sleep–SNP interaction in lead SNPs near known TG loci,
including lead SNPs near AKR1C4 and NAT2 (Supplementary
Data 4). Of the 16 lead SNPs in previously unreported regions
associated with TG when considering STST, we observed 12 lead
SNPs with a 1df interaction P-value < 5 × 10−4 (P-valueFDR <
0.05), including lead SNPs mapped to LINC0140, METRNL,
AC092635.1, MICAL3, MIR548M, MYO9B, YPEL5, LINC01289,
TMEM132B, ACSM2B, AC097499.1 and RP4–660H19.1. In
addition, we observed some lead SNPs within 1Mb physical
distance from known TG loci, such as MMP3 and NECTIN2
(Supplementary Data 5). For both LTST and STST analyses, we
again observed differing effects dependent on the exposure group
in the discovery meta-analyses (Supplementary Data 10 and 11;
Fig. 4).

Look-ups and bioinformatics analyses. Based on the lead SNPs
mapped to the previously unreported loci, we conducted a look-
up in GWAS summary statistics data on different questionnaire-
based sleep phenotypes from up to 337,074 European-ancestry
individuals of the UK Biobank (Supplementary Data 12). We only
observed the TG-identified rs7924896 (METTL15) to be asso-
ciated with snoring (P-value= 1e−5) after correction for a total of
343 explored SNP–sleep associations (seven sleep phenotypes ×
49 genes; ten SNPs were unavailable; threshold for significance=
1.46e−4). Furthermore, we did not observe that any of these
identified SNPs was associated with accelerometer-based sleep
traits (Supplementary Data 13). In general, we did not find sub-
stantial evidence that the identified lead SNPs in previously
unreported regions were associated with coronary artery disease
in the CARGIoGRAMplusC4D consortium (Supplementary
Table 5).

Identified lipid loci from previously unreported regions were
further explored in the GWAS catalogue (Supplementary
Data 14). Several of the mapped genes of these lead SNPs have
previously been identified with multiple other traits, such as body
mass index (FHIT, KLH31, ADAMTS17, and MAGI2), mental
health (FHIT [autism/schizophrenia, depression], SNX13 [cogni-
tion]), gamma-glutamyltransferase (ZNF827, MICAL3), and
inflammatory processes (ZNF827, NR5A2).

We additionally investigated differential expression of these
lead SNPs using data from multiple tissues from the GTEx
consortium37,38 (Supplementary Data 15). Lead SNPs were
frequently associated with mRNA expression levels of the
mapped gene and with trans-eQTLs. For example, rs429921
(mapped to VAT1L) was associated with differential mRNA
expression levels of CLEC3A and WWOX, which are located
more upstream on chromosome 16 (Supplementary Fig. 6).
rs3826692 (mapped to MYO9B) was specifically associated with
differential expression of the nearby USE1 gene. Identified SNPs
were frequently associated with differential expression in the
arteries. For example, rs6501801 (KIAA0195) was associated with
differential expression in arteries at different locations. Several of
the other identified SNPs showed differential expression in
multiple tissues, including the gastrointestinal tract, (subcuta-
neous/visceral) adipose tissue, brain, heart, muscle, lung, liver,
nervous system, skin, spleen, testis, thyroid and whole blood.

Discussion
We investigated SNP–sleep interactions in a large, multi-ancestry,
meta-analysis of blood lipid levels. Given the growing evidence
that sleep influences metabolism39–44, at least in part through
effects on gene expression, we hypothesised that short/long
habitual sleep duration may modify the effects of genetic loci on

lipid levels. In a total study population of 126,926 individuals
from five different ancestry groups, we identified 49 loci pre-
viously unreported in relation to lipid traits when considering
either long or short total sleep time in the analyses. An additional
ten previously unreported lipid loci were identified in analyses in
Europeans only. Of these identified loci, most loci at least in part
were driven by differing effects in short/long sleepers compared
with the rest of the study population. Multiple of the genes
identified from previously unreported regions for lipid traits have
been previously identified in relation to adiposity, hepatic func-
tion, inflammation or psychosocial traits, collectively contributing
to potential biological mechanisms involved in sleep-associated
adverse lipid profile.

In addition to the over 300 genetic loci that already have been
identified in relation to blood lipid concentrations in different
efforts4–10, we identified 49 additional loci associated with either
HDL-c, LDL-c or TG in our multi-ancestry analysis. While for
some of the SNPs had no neighbouring SNPs in high LD (e.g.,
rs7799249; mapped to ATP6V0A4), our applied filters (e.g.,
imputation quality > 0.5) would suggest that the chance of inva-
lidity of the findings is negligible. Furthermore, in the case of
rs7799249, no SNPs in high LD are known in individuals from
different ancestries45. Considering the previously unreported TG
loci identified by considering interactions with total sleep dura-
tion explain an additional 4.25% and 1.51% of the total variation
in TG concentrations, for STST and LTST, respectively. Whilst
the additionally explained variance for LDL-c (0.38% and 0.13%)
and HDL-c (1.00% and 0.97%) was low/modest, the lead SNPs
from previously unreported regions for LDL-c levels map to genes
that are known to be associated with adiposity, inflammatory
disorders, cognition, and liver function, thus identifying pathways
by which sleep disturbances may influence lipid biology.

Across multiple populations, both short and long sleep dura-
tion have been associated with cardiovascular disease and dia-
betes46. There are numerous likely mechanisms for these
associations. Experimental sleep loss results in inflammation,
cellular stress in brain and peripheral tissues, and altered
expression of genes associated with oxidative stress47,48. The
impact of long sleep on metabolism is less well understood than
the effect of short sleep, and multiple of the associations seem to
overlap with short sleep as well. Long sleep duration is associated
with decreased energy expenditure, increased sedentary time,
depressed mood and obesity-related factors associated with
inflammation and a pro-thrombotic state49, as well as with higher
C-reactive protein and interleukin-6 concentrations50. However,
studies that adjusted for multiple confounders, including obesity,
depression and physical activity, showed that long sleep remained
a significant predictor of adverse cardiovascular outcomes46,51.
Therefore, the adverse effects of long sleep also may partly reflect
altered sleep–wake rhythms and chronodisruption resulting from
misalignment between the internal biological clock with timing of
sleep and other behaviours that track with sleep, such as timing of
food intake, activity and light exposure52. Altered sleep–wake and
circadian rhythms influence glucocorticoid signalling and auto-
nomic nervous system excitation patterns across the day41, which
can influence the phase of gene expression. These inputs appear
to be particularly relevant for genes controlling lipid biosynthesis,
absorption and degradation, many of which are rhythmically
regulated and under circadian control53. Moreover, the molecular
circadian clock acts as a rate-limiting step in cholesterol and bile
synthesis, supporting the potential importance of circadian dis-
ruption in lipid biology54. Collectively, these data suggest differ-
ent biological mechanisms involved in short and long sleep-
associated adverse lipid profiles.

Consistent with different hypothesised physiological effects of
short and long sleep, we observed no overlap in the previously
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unreported loci that were identified by modelling interactions
with short or long sleep duration. The lipid loci that were iden-
tified after considering STST include FHIT, MAGI2 and KLH3,
which have been previously associated with body mass index
(BMI)55–61. Interestingly, although not genome-wide significant,
variation in MAGI2 has been associated with sleep duration62,
however, we did not find evidence for an association with
rs10244093 in MAGI2 with any sleep phenotype in the UK
Biobank sample. Variants in MICAL3 and ZNF827, that were also
identified after considering STST, have been associated with
serum liver enzymes gamma-glutamyltransferase measurement
and/or aspartate aminotransferase levels63,64, which have been
implicated in cardiometabolic disturbances65–68 and associated
with prolonged work hours (which often results in short or
irregular sleep)69. Other loci identified through interactions with
STST were in genes previously associated with neurocognitive
and neuropsychiatric conditions, possibly reflecting associations
mediated by heightened levels of cortisol and sympathetic activity
that frequently accompany short sleep.

In relation to LTST, the previously unreported lipid genes have
been previously related to inflammation-driven diseases of the
intestine, blood pressure and blood count measurements,
including traits influenced by circadian rhythms70,71. However,
none of these loci with LTST directly interacted with genes
involved in the central circadian clock (e.g., PER2, CRY2 and
CLOCK) in the KEGG pathways database72. The NR5A2 and
SLC35F3 loci have been associated with inflammation-driven
diseases of the intestine73,74. Ulcerative colitis, an inflammatory
bowel disease, has been associated with both longer sleep dura-
tion75 and circadian disruption70. ARNT2, also identified via a
LTST interaction, heterodimerizes with transcriptional factors
implicated in homoeostasis and environmental stress
responses76,77. A linkage association study has reported nominal
association of this gene with lipids in a Caribbean Hispanic
population78.

We identified a number of additional genetic lead SNPs in the
meta-analyses performed in European-Americans only. For
example, we identified rs3938236 mapped to SPRED1 to be
associated with HDL-c after accounting for potential interaction
with LTST. Interestingly, this gene has been previously associated
with hypersomnia in Caucasian and Japanese populations79, but
was not identified in our larger multi-ancestry analysis, possibly
due to cultural differences in sleep behaviours80.

We additionally found evidence, amongst others, in the known
lipid loci APOB, PCSK9 and LPL for interaction with either short
or long sleep. Associations have been observed previously
between short sleep and ApoB concentrations, have been
observed previously81. LPL expression has been shown to follows
a diurnal rhythm in several metabolic organs43,82, and disturbing
sleeping pattern by altered light exposure can lower LPL activity,
at least in brown adipose tissue43. Similar effects of sleep on
hepatic secretion of ApoB and PCSK9 may be expected. Indeed,
in humans PCSK9 has a diurnal rhythm synchronous with
hepatic cholesterol synthesis83. Although the interaction effects
we observed were rather weak, the supporting evidence from the
literature suggests that sleep potentially modifies the effect of
some of the well-known lipid regulators that are also targets for
therapeutic interventions.

Some of the previously unreported lipid loci have been pre-
viously associated with traits related to sleep. For example,
MAGI2 and MYO9B62 have been suggestively associated with
sleep duration and quality, respectively. Genetic variation in
TMEM132B has been associated with excessive daytime sleepi-
ness84, and EPHB1 has been associated with self-reported
chronotype85. These findings suggest some shared genetic com-
ponent of lipid regulation and sleep biology. However, with the

exception of the METTL15-mapped rs7924896 variant in relation
to snoring, none of the lead SNPs mapped to the previously
unreported lipid loci were associated with any of the investigated
sleep phenotypes in the UK Biobank population, suggesting no or
minimal shared component in sleep and lipid biology but rather
that sleep duration specifically modifies the effect of the variant
on the lipid traits.

This study was predominantly comprised of individuals of
European ancestry, despite our efforts to include as many studies
of diverse ancestries as possible. For this reason, additional efforts
are required to specifically study gene–sleep interactions in those
of African, Asian and Hispanic ancestry once more data becomes
available. In line, we identified several loci that were identified
only in the European-ancestry analysis, and not in the multi-
ancestry analysis, suggestion that there might be ancestry-specific
effects. The multi-ancestry analysis highlighted the genetic
regions that are more likely to play a role in sleep-associated
adverse lipid profiles across ancestries. In addition, our study used
questionnaire-based data on sleep duration. Although the use of
questionnaires likely increased measurement error and decreased
statistical power, questionnaire-based assessments of sleep dura-
tion have provided important epidemiological data, including the
identification of genetic variants for sleep traits in genome-wide
association studies84. Identified variants for sleep traits have been
recently successfully validated using accelerometer data86,
although the overall genetic correlation with accelerometer-based
sleep duration was shown to be low87. Moreover, observational
studies showed only a modest correlation between the pheno-
types88, which suggest that each approach characterises some-
what different phenotypes. At this time, we did not have sufficient
data to evaluate other measures of sleep duration such as poly-
somnography or accelerometery. A more comprehensive char-
acterisation, additional circadian traits as well as larger study
samples (e.g., embedded in the large biobanks that become
increasingly available for research) will refine our understanding
of the interaction of these fundamental phenotypes and lipid
biology.

In summary, the gene–sleep interaction efforts described in the
present multi-ancestry study identified many lipid loci previously
unreported to be associated with either HDL-c, LDL-c or trigly-
cerides levels. Multiple of the these loci were driven by interac-
tions with either short or long sleep duration, and were mapped
to genes also associated with adiposity, inflammatory or neu-
ropsychiatric traits. Collectively, the results highlight the inter-
actions between extreme sleep–wake exposures and lipid biology.

Methods
Participants. Analyses were performed locally by the different participating stu-
dies. Discovery and replication analyses comprised men and women between the
age of 18 and 80 years, and were conducted separately for the different contributing
(self-defined) ancestry groups, including: European, African, Asian, Hispanic and
Brazilian (discovery analysis only). Descriptions of the different participating
studies are described in detail in the Supplementary Notes 1 and 3, and study-
specific characteristics (sizes, trait distribution and data preparation) are presented
in Supplementary Tables 1–6. Every effort was made to include as many studies as
possible.

Ethical regulations. The present work was approved by the Institutional Review
Board of Washington University in St. Louis and complies with all relevant ethical
regulations. Each participating study obtained written informed consent from all
participants and received approval from the appropriate local institutional review
boards.

Lipid traits. We conducted all analyses on the following lipid traits: HDL-c, LDL-c
and TG. TG and LDL-c concentrations were measured in samples from individuals
who had fasted for at least 8 hours. LDL-c could be either directly assayed or
derived using the Friedewald equation89 (the latter being restricted to those with
TG ≤ 400 mg/dL). We furthermore corrected LDL-c for the use of lipid-lowering
drugs, defined as any use of a statin drug or any unspecified lipid-lowering drug
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after the year 1994 (when statin use became common in general practice). If LDL-c
was directly assayed, the concentration of LDL-c was corrected by dividing the
LDL-c concentration by 0.7. If LDL-c was derived using the Friedewald equation,
we first divided the concentration of total cholesterol by 0.8 before LDL-c was
calculated by the Friedewald equation. Due to the skewed distribution of HDL-c
and TG, we ln-transformed the concentration prior to the analyses; no transfor-
mation for LDL-c was required. When an individual cohort measured the lipid
traits during multiple visits, the visit with the largest available sample and con-
current availability of the sleep questions was selected.

Nocturnal total sleep time. Contributing cohorts collected information on the
habitual sleep duration using either a single question such as ‘on an average night,
how long do you sleep?’ or as part of a standardised sleep questionnaire (e.g., the
Pittsburgh Sleep Quality Index questionnaire90). For the present project, we
defined both STST and LTST. To harmonise the sleep duration data across cohorts
from different countries, cultures and participants with different physical char-
acteristics, in whom sleep duration was assessed using various questions, we
defined STST and LTST using cohort-specific residuals, adjusting for age and sex.
An exception was for AGES and HANDLS cohorts, we used a cohort-specific
definition due to limited response categories in relationship to the available
question on sleep duration. Instead, we defined STST or LTST based on expert
input. Exposure to STST was defined as the lowest 20% of the sex- and age-adjusted
sleep-time residuals (coded as ‘1’). Exposure to LTST was defined as the highest
20% of the sex- and age-adjusted sleep-time residuals (coded as ‘1’). For both sleep-
time definitions, we considered the remaining 80% of the population as being
unexposed to either STST or LTST (coded as ‘0’).

Genotype data. Genotyping was performed by each participating study locally
using genotyping arrays from either Illumina (San Diego, CA, USA) or Affymetrix
(Santa Clara, CA, USA). Each study conducted imputation using various software
programmes and with local cleaning thresholds for call rates (usually > 98%) and
Hardy–Weinberg equilibrium (usually P-value < 1e−5). The cosmopolitan refer-
ence panel from the 1000 Genomes Project Phase I Integrated Release Version 3
Haplotypes (2010–11 data freeze, 2012-03-14 haplotypes) was specified for
imputation. Only SNPs on the autosomal chromosomes with a minor allele fre-
quency of at least 0.01 were considered in the analyses. Specific details of each
participating study’s genotyping platform and imputation software are described
(Supplementary Tables 3 and 6).

Stage 1 analysis (discovery phase). The discovery phase of the present project
included 21 cohorts contributing data from 28 study/ancestry groups, and included
up to 62,457 participants of EUR, AFR, ASN, HISP and BR ancestry (Supple-
mentary Tables 1–3). All cohorts ran statistical models according to a standardised
analysis protocol. The main model for this project examined the SNP-main effect
and the multiplicative interaction term between the SNP and either LTST or STST:

E Yð Þ ¼ β0 þ βEE þ βGSNP þ βGEE � SNP þ βCC ð1Þ
in which E is the sleep exposure variable (LTST/STST) and C are the (study-
specific) covariates, which was similar to what we have done in previous
studies4,11,12. In addition, we examined the SNP-main effect (without incorpor-
ating LTST/STST) and the SNP-main effect stratified by the exposure:

E Yð Þ ¼ β0� þ βG�SNP þ βC�C ð1Þ
All models were performed for each lipid trait and separately for the different

ancestry groups. Consequently, per ancestry group, we requested a total of seven
GWA analyses per lipid trait. All models were adjusted for age, sex, field centre (if
required), and the first principal components to correct for population
stratification. The number of principal components included in the model was
chosen according to cohort-specific preferences (ranging from 0 to 10). All studies
were asked to provide the effect estimates (SNP-main and -interaction effect) with
accompanying robust estimates of the standard error for all requested models. A
robust estimate of the covariance between the main and interaction effects was also
provided. To obtain robust estimates of covariance matrices and standard errors,
studies with unrelated participants used R packages such as either sandwich91,92 or
ProbABEL93. Studies including related individuals used either generalised
estimating equations (R package geepack94) or linear mixed models (GenABEL95,
MMAP or R package sandwich91,92). Sample code provided to studies to generate
these data has been previously published96.

Upon completion of the analyses by local institution, all summary data were
stored centrally for further processing and meta-analyses. We performed estimative
quality control (QC) using the R-based package EasyQC97 (www.genepi-
regensburg.de/easyqc) at the study level (examining the results of each study
individually), and subsequently at the ancestry level (after combining all ancestry-
specific cohorts using meta-analyses). Study-level QC consisted of excluding all
SNPs with MAF < 0.01, harmonisation of alleles, comparison of allele frequencies
with ancestry-appropriate 1000 Genomes reference data, and harmonisation of all
SNPids to a standardised nomenclature according to chromosome and position.
Ancestry-level QC included the compilation of summary statistics on all effect
estimates, standard errors and p-values across studies to identify potential outliers,

and production of SE-N and QQ plots to identify analytical problems (such as
improper trait transformations)98.

Prior to the ancestry-specific meta-analyses, we excluded the following SNPs
from the cohort-level data files: all SNPs with an imputation quality < 0.5, and all
SNPs with a minor allele count in the exposed group (LTST or STST equals ‘1’) x
imputation quality of less than 20. SNPs in the European-ancestry and multi-
ancestry analyses had to be present in at least three cohorts and 5000 participants.
Due to the limited sample size of the non-European ancestries (either discovery or
replication), we did not take into account this filter in those ancestry-level meta-
analyses.

Meta-analyses were conducted for all models using the inverse variance-
weighted fixed effects method as implemented in METAL99 (http://genome.sph.
umich.edu/wiki/METAL). We evaluated both a 1df of freedom test of interaction
effect and a 2df joint test of main and interaction effects, following previously
published methods29. A 1df Wald test was used to evaluate the 1df interaction, as
well as the main effect in models without an interaction term. A 2df Chi-squared
test was used to jointly test the effects of both the variant and the variant × LTST/
STST interaction100. Meta-analyses were conducted within each ancestry
separately. Multi-ancestry meta-analyses were conducted on all ancestry-specific
meta-analyses. Genomic control correction was applied on all cohorts incorporated
in the ancestry-level meta-analyses as well as on the final meta-analyses for the
publication. From this effort, we selected all SNPs associated with any of the lipid
traits with P ≤ 5 × 10−7 in the 2df interaction test for replication in the Stage 2
analysis. This cut-off was selected to minimise false-negative results.

Stage 2 analysis (replication phase). All SNPs selected in Stage 1 for replication
were evaluated in the interaction model in up to 18 cohorts contributing data from
20 study groups totalling up to 64,469 individuals (Supplementary Tables 4–6). As
we had a limited number of individuals from non-European ancestry in the
replication analyses, we did not consider an the non-European ancestries separately
and only focussed on a European-ancestry and multi-ancestry analysis.

Study- and ancestry-level QC was carried out as in stage 1. In contrast to stage
1, no additional filters were included for the number of studies or individuals
contributing data to stage 2 meta-analyses, as these filters were implemented to
reduce the probability of false positives, and were less relevant in stage 2. Stage 2
SNPs were evaluated in all ancestry groups and for all traits, no matter what
specific meta-analysis met the P-value threshold in the stage 1 analysis. We did not
apply genomic control to any of the Stage 2 analyses given the expectation of
association.

An additional meta-analysis was performed combining the Stage 1 and 2 meta-
analyses. SNPs (irrespective of being known or previously unreported) were
considered to be replicated when the 2df interaction test P-values of Stage 1 < 5 ×
10−7, Stage 2 < 0.05 with a similar direction of effect as in the discovery meta-
analysis, and Stage 1+ 2 < 5 × 10−8. Replicated SNPs were subsequently used in
different bioinformatics tools for further processing. In addition, 1df P-values
(SNP-sleep interaction effect only) of the lead SNPs of both the replicated known
and previously unreported loci were calculated to explore whether genetic variant
were specifically driven by SNP-main or SNP-interaction effects. Based on the total
number of lead SNPs across all analyses, we performed correction using the false
discovery rate to quantify statistical significance36.

Bioinformatics. Replicated SNPs were first processed using the online tool
FUMA101 to identify independent lead SNPs and to perform gene mapping. From
the SNP that has a P-value in the 2df interaction test < 5 × 10−8, we determined
lead SNPs that were independent from each other at R2 < 0.1 using the 1000 G
Phase 3 EUR as a reference panel population. Independent lead SNPs with a
physical distance > 1 mB from a known locus were considered as previously
unreported. Regional plots of these loci were made using the online LocusZoom
tool102. The explained variance of the identified genetic lead SNPs mapped to
previously unreported lipid regions was calculated based on the summary statistics
of the combined analysis of Stage 1 and 2 using the R-based VarExp package,
which has been previously validated to provide similar results to individual par-
ticipant data35. This package calculates the variance explained on the basis of the
combined (joint) SNP-main and SNP-interaction effect. Differential expression
analyses of the lead SNPs in the identified genetic loci was performed using GTEx
[https://gtexportal.org/home/]37,38.

Look-ups of previously unreported loci in other databases. The genetic loci for
the three lipid traits previously unreported were further explored in the GWAS
catalogue [https://www.ebi.ac.uk/gwas/] to investigate the role of these mapped
genes in other traits. Furthermore, we extracted the lead SNPs from the previously
unreported lipid loci from publically available GWAS data from the UK Biobank
[http://www.nealelab.is/uk-biobank/] for different questionnaire-based sleep phe-
notypes, notably ‘daytime snoozing/sleeping (narcolepsy)’, ‘getting up in the
morning', ‘morning/evening person (chronotype)’, ‘nap during the day’, ‘sleep
duration’, ‘sleeplessness/insomnia’ and ‘snoring’. Analyses on these phenotypes
were generally done using continuous outcomes; the variable ‘sleep duration’ was
expressed in hours of total sleep per day. GWAS in the UK Biobank were done in
European-ancestry individuals only (N up to 337,074). We furthermore extracted
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the identified lead SNPs from the previously unreported regions for lipid traits
from the GWAS analyses done on accelerometer-based sleep variables, which was
done in European-ancestry individuals from the UK Biobank (N= 85,670; [http://
sleepdisordergenetics.org/])87. In addition, we extracted the these identified lead
SNPs from publically available summary-statistics data on coronary artery disease
of the CARDIoGRAMplusC4D consortium, which included 60,801 cases of cor-
onary artery disease and 123,504 controls [http://www.cardiogramplusc4d.org]103.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Due to restrictions in the written informed consent and local regulations, no individual
genotype-level data could be shared that were part of this project. Summary results files
from both the trans-ancestry and European meta-analyses are available to the public via
the CHARGE (Cohorts for Heart and Ageing Research in Genomics Epidemiology)
dbGaP summary site (phs000930 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000930.v1.p1]). We acknowledge the use of publically available
data sources for summary-based statistics, which includes the gTex portal [https://
gtexportal.org/home/], Nealelab [http://www.nealelab.is/uk-biobank/], Sleep Disorder
Genetics [http://sleepdisordergenetics.org/] and the CARDIoGRAMplusC4D consortium
[http://www.cardiogramplusc4d.org].
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