87 research outputs found

    Chemical abundances in LMC stellar populations. II. The bar sample

    Full text link
    This paper compares the chemical evolution of the Large Magellanic Cloud (LMC) to that of the Milky Way (MW) and investigates the relation between the bar and the inner disc of the LMC in the context of the formation of the bar. We obtained high-resolution and mid signal-to-noise ratio spectra with FLAMES/GIRAFFE at ESO/VLT and performed a detailed chemical analysis of 106 and 58 LMC field red giant stars (mostly older than 1 Gyr), located in the bar and the disc of the LMC respectively. We measured elemental abundances for O, Mg, Si, Ca, Ti, Na, Sc, V, Cr, Co, Ni, Cu, Y, Zr, Ba, La and Eu. We find that the {\alpha}-element ratios [Mg/Fe] and [O/Fe] are lower in the LMC than in the MW while the LMC has similar [Si/Fe], [Ca/Fe], and [Ti/Fe] to the MW. As for the heavy elements, [Ba,La/Eu] exhibit a strong increase with increasing metallicity starting from [Fe/H]=-0.8 dex, and the LMC has lower [Y+Zr/Ba+La] ratios than the MW. Cu is almost constant over all metallicities and about 0.5 dex lower in the LMC than in the MW. The LMC bar and inner disc exhibit differences in their [{\alpha}/Fe] (slightly larger scatter for the bar in the metallicity range [-1,-0.5]), their Eu (the bar trend is above the disc trend for [Fe/H] > -0.5 dex), their Y and Zr, their Na and their V (offset between bar and disc distributions). Our results show that the chemical history of the LMC experienced a strong contribution from type Ia supernovae as well as a strong s-process enrichment from metal-poor AGB winds. Massive stars made a smaller contribution to the chemical enrichment compared to the MW. The observed differences between the bar and the disc speak in favour of an episode of enhanced star formation a few Gyr ago, occurring in the central parts of the LMC and leading to the formation of the bar. This is in agreement with recently derived star formation histories.Comment: 22 pages, 20 figures; Accepted for publication in A&

    Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    Get PDF
    Aims. The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods. We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results. We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions. The [Ba, La, Ce, Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La, Nd/Eu] with increasing metallicity, for metal-rich stars with [Fe/H] > 0 dex, may indicate that the s-process from AGB stars starts to operate at a metallicity around solar. Finally, [Eu/Fe] follows the [{\alpha}/Fe] behaviour, as expected, since these elements are produced by SNe type II.Comment: 12 pages, 10 figures, accepted for publication in A&

    Sodium abundances of AGB and RGB stars in Galactic globular clusters II. Analysis and results of NGC 104, NGC 6121, and NGC 6809

    Get PDF
    Aims. We investigate the Na abundance distribution of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) and its possible dependence on GC global properties, especially age and metallicity. Methods. We analyze high-resolution spectra of a large sample of AGB and red giant branch (RGB) stars in the Galactic GCs NGC 104, NGC 6121, and NGC 6809 obtained with FLAMES/GIRAFFE at ESO/VLT, and determine their Na abundances. This is the first time that the AGB stars in NGC 6809 are targeted. Moreover, to investigate the dependence of AGB Na abundance dispersion on GC parameters, we compare the AGB [Na/H] distributions of a total of nine GCs, with five determined by ourselves with homogeneous method and four from literature, covering a wide range of GC parameters. Results. NGC 104 and NGC 6809 have comparable AGB and RGB Na abundance distributions revealed by the K−S test, while NGC 6121 shows a lack of very Na-rich AGB stars. By analyzing all nine GCs, we find that the Na abundances and multiple populations of AGB stars form complex picture. In some GCs, AGB stars have similar Na abundances and/or second-population fractions as their RGB counterparts, while some GCs do not have Na-rich second-population AGB stars, and various cases exist between the two extremes. In addition, the fitted relations between fractions of the AGB second population and GC global parameters show that the AGB second-population fraction slightly anticorrelates with GC central concentration, while no robust dependency can be confirmed with other GC parameters. Conclusions. Current data roughly support the prediction of the fast-rotating massive star (FRMS) scenario. However, considering the weak observational and theoretical trends where scatter and exceptions exist, the fraction of second-population AGB stars can be affected by more than one or two factors, and may even be a result of stochasticity

    Ariel stellar characterisation: I -- homogeneous stellar parameters of 187 FGK planet host stars Description and validation of the method

    Get PDF
    In 2020 the European Space Agency selected Ariel as the next mission to join the space fleet of observatories to study planets outside our Solar System. Ariel will be devoted to the characterisation of a thousand planetary atmospheres, for understanding what exoplanets are made of, how they formed and how they evolve. To achieve the last two goals all planets need to be studied within the context of their own host stars, which in turn have to be analysed with the same technique, in a uniform way. We present the spectro-photometric method we have developed to infer the atmospheric parameters of the known host stars in the Tier 1 of the Ariel Reference Sample. Our method is based on an iterative approach, which combines spectral analysis, the determination of the surface gravity from {\em Gaia} data, and the determination of stellar masses from isochrone fitting. We validated our approach with the analysis of a control sample, composed by members of three open clusters with well-known ages and metallicities. We measured effective temperature, Teff, surface gravity, logg, and the metallicity, [Fe/H], of 187 F-G-K stars within the Ariel Reference Sample. We presented the general properties of the sample, including their kinematics which allows us to separate them between thin and thick disc populations. A homogeneous determination of the parameters of the host stars is fundamental in the study of the stars themselves and their planetary systems. Our analysis systematically improves agreement with theoretical models and decreases uncertainties in the mass estimate (from 0.21+/-0.30 to 0.10+/-0.02 M_sun), providing useful data for the Ariel consortium and the astronomical community at large.Comment: Accepted for publication in A&A, 13 pages, 14 figures, Tables A1 and A2 in the Appendix will be available at CDS and can be requested by email to: [email protected]

    The GALAH survey: Multiple stars and our Galaxy. I. A comprehensive method for deriving properties of FGK binary stars

    Get PDF
    Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. We present a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. They were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. This sample consists mostly of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. To compute parameters of the primary and secondary star (Teff[1,2]T_{\rm eff[1,2]}, logg[1,2]\log g_{[1,2]}, [Fe/H], Vr[1,2]V_{r[1,2]}, vmic[1,2]v_{\rm mic[1,2]}, vbroad[1,2]v_{\rm broad[1,2]}, R[1,2]R_{[1,2]}, and E(BV)E(B-V)), we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. The derived stellar properties and their distributions show trends that are expected for a population of close binaries (a << 10 AU) with mass ratios 0.5q10.5 \leq q \leq 1. The derived metallicity of these binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.Comment: Accepted for publication in A&

    Gaia-ESO survey: Lithium abundances in open cluster Red Clump stars

    Get PDF
    Context. It has recently been suggested that all giant stars with masses below 2 M⊙ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). Aims. We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. Methods. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 M⊙). We compare these observations with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. Results. In six clusters, we find close to 35% of RC stars have Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation has been for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that this possible Li production is ubiquitous. For about 65% of RC giants, we can only determine upper limits in abundances that could be hiding very low Li content. Conclusions. Our results indicate the possibility that Li is being produced in the RC, at levels that would not typically permit the classification of these the stars as Li rich. The determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by subsequent Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models including an additional mixing episode close to the He flash.</jats:p

    The Gaia-ESO survey: mapping the shape and evolution of the radial abundance gradients with open clusters

    Get PDF
    The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangle the scenarios of formation and evolution of the Galaxy. We used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance to iron ratio gradients, and their time evolution. We selected member stars in 62 open clusters, with ages from 0.1 to about 7~Gyr, located in the Galactic thin disc at Galactocentric radii from about 6 to 21~kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins. The[Fe/H] gradient has a slope of -0.054 dex~kpc-1. We saw different behaviours for elements belonging to different channels. We found that the youngest clusters in the inner disc have lower metallicity than their older counterpart and they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggested that it might be a bias introduced by the standard spectroscopic analysis producing lower metallicities in low gravity stars. To delineate the shape of the `true' gradient, we should limit our analysis to stars with low surface gravity logg>2.5 and xi<1.8 km~s-1. Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc in the latest Gyr. We found a secondary role of clusters' migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.Comment: 25 pages, 14 figures and 4 tables in the main text, 3 figures and 7 tables in the Appendix. Accepted for publication in A&

    The GALAH survey: Multiple stars and our Galaxy: I. A comprehensive method for deriving properties of FGK binary stars

    Get PDF
    Context. Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. The advent of large-scale spectroscopic and photometric surveys allows us to obtain large samples of binaries that permit characterising their populations. Aims. We aim to obtain a large sample of double-lined spectroscopic binaries (SB2s) by analysis of spectra from the GALAH survey in combination with photometric and astrometric data. A combined analysis will provide stellar parameters of thousands of binary stars that can be combined to form statistical observables of a given population. We aim to produce a catalogue of well-characterised systems, which can in turn be compared to models of populations of binary stars, or to follow-up individual systems of interest. Methods. We obtained a list of candidate SB2 systems from a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. To compute parameters of the primary and secondary star, we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. We used a Markov chain Monte Carlo approach to sample the posterior distributions of the following model parameters for the two stars: Teff[1,2], logg[1,2], [Fe/H], Vr[1,2], vmic[1,2], vbroad[1,2], R[1,2], and E(B−V). Results. We present results for 12 760 binary stars detected as SB2s. We construct the statistical observables T1∕T2, ΔVr, and R1∕R2, which demonstrate that our sample mostly consists of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. The majority of these binary stars is concentrated at the lower boundary of the ΔVr distribution, and the R1∕R2 ratio is mostly close to unity. The derived metallicity of our binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample. Conclusions. Our sample of binary stars represents a large population of well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. The derived stellar properties and their distributions show trends that are expected for a population of close binary stars (a < 10 AU) detected through double lines in their spectra. Our detection technique allows us to probe binary systems with mass ratios 0.5 ≤q ≤ 1.This research has been supported by the Australian Research Council (grants DP150100250 and DP160103747). This research was partly supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. This research has made use of NASA’s Astrophysics Data System and the CDS services (Strasbourg, France)

    MELCHIORS: The Mercator Library of High Resolution Stellar Spectroscopy

    Get PDF
    Aims. Over the past decades, libraries of stellar spectra have been used in a large variety of science cases, including as sources of reference spectra for a given object or a given spectral type. Despite the existence of large libraries and the increasing number of projects of large-scale spectral surveys, there is to date only one very high-resolution spectral library offering spectra from a few hundred objects from the southern hemisphere (UVES-POP). We aim to extend the sample, offering a finer coverage of effective temperatures and surface gravity with a uniform collection of spectra obtained in the northern hemisphere.Methods. Between 2010 and 2020, we acquired several thousand echelle spectra of bright stars with the Mercator-HERMES spectrograph located in the Roque de Los Muchachos Observatory in La Palma, whose pipeline offers high-quality data reduction products. We have also developed methods to correct for the instrumental response in order to approach the true shape of the spectral continuum. Additionally, we have devised a normalisation process to provide a homogeneous normalisation of the full spectral range for most of the objects.Results. We present a new spectral library consisting of 3256 spectra covering 2043 stars. It combines high signal-to-noise and high spectral resolution over the entire range of effective temperatures and luminosity classes. The spectra are presented in four versions: raw, corrected from the instrumental response, with and without correction from the atmospheric molecular absorption, and normalised (including the telluric correction)
    corecore