168 research outputs found

    Low frequency shot noise in double-barrier resonant-tunneling structures in a strong magnetic field

    Full text link
    Low frequency shot noise and dc current profiles for a double-barrier resonant-tunneling structure (DBRTS) under a strong magnetic field applied perpendicular to the interfaces have been studied. Both the structures with 3D and 2D emitter have been considered. The calculations, carried out with the Keldysh Green's function technique, show strong dependencies of both the current and noise profiles on the bias voltage and magnetic field. The noise spectrum appears sensitive to charge accumulation due to barriere capacitances and both noise and dc-current are extremely sensitive to the Landau levels' broadening in the emitter electrode and can be used as a powerful tool to investigate the latter. As an example, two specific shapes of the levels' broadening have been considered - a semi-elliptic profile resulting from self-consistent Born approximation, and a Gaussian one resulting from the lowest order cumulant expansion.Comment: 15 pages Revtex, 8 Postscript figures included. To be published in Journal of Physics: Condensed matte

    Long-range potential fluctuations and 1/f noise in hydrogenated amorphous silicon

    Full text link
    We present a microscopic theory of the low-frequency voltage noise (known as "1/f" noise) in micrometer-thick films of hydrogenated amorphous silicon. This theory traces the noise back to the long-range fluctuations of the Coulomb potential produced by deep defects, thereby predicting the absolute noise intensity as a function of the distribution of defect activation energies. The predictions of this theory are in very good agreement with our own experiments in terms of both the absolute intensity and the temperature dependence of the noise spectra.Comment: 8 pages, 3 figures, several new parts and one new figure are added, but no conceptual revision

    Microscopic analysis of shot-noise suppression in nondegenerate diffusive conductors

    Get PDF
    We present a theoretical investigation of shot-noise suppression due to long-range Coulomb interaction in nondegenerate diffusive conductors. Calculations make use of an ensemble Monte Carlo simulator self-consistently coupled with a one-dimensional Poisson solver. We analyze the noise in a lightly doped active region surrounded by two contacts acting as thermal reservoirs. By taking the doping of the injecting contacts and the applied voltage as variable parameters, the influence of elastic and inelastic scattering in the active region is investigated. The transition from ballistic to diffusive transport regimes under different contact injecting statistics is analyzed and discussed. Provided significant space-charge effects take place inside the active region, long-range Coulomb interaction is found to play an essential role in suppressing the shot noise at qUkBTqU \gg k_BT. In the elastic diffusive regime, momentum space dimensionality is found to modify the suppression factor γ\gamma, which within numerical uncertainty takes values respectively of about 1/3, 1/2 and 0.7 in the 3D, 2D and 1D cases. In the inelastic diffusive regime, shot noise is suppressed to the thermal value.Comment: 11 pages, 13 figure

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases
    corecore