We present a microscopic theory of the low-frequency voltage noise (known as
"1/f" noise) in micrometer-thick films of hydrogenated amorphous silicon. This
theory traces the noise back to the long-range fluctuations of the Coulomb
potential produced by deep defects, thereby predicting the absolute noise
intensity as a function of the distribution of defect activation energies. The
predictions of this theory are in very good agreement with our own experiments
in terms of both the absolute intensity and the temperature dependence of the
noise spectra.Comment: 8 pages, 3 figures, several new parts and one new figure are added,
but no conceptual revision