1,421 research outputs found

    Charged-to-neutral correlation at forward rapidity in Au+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at sNN\sqrt{s_{NN}}=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.Comment: 14 pages, 6 figure

    Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at √s = 200 GeV

    Get PDF
    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A[subscript LL], in polarized pp collisions at center-of-mass energy √s = 200  GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05.United States. Dept. of Energy. Office of Nuclear PhysicsUnited States. Dept. of Energy. Office of High Energy PhysicsNational Science Foundation (U.S.

    Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at √s = 200 GeV

    Get PDF
    The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < η < 2.0 in polarized proton-proton collisions at √s = 200  GeV are presented. Neutral pions were detected using the end cap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p[subscript T] < 16  GeV/c and is found to agree with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry A[subscript LL] is measured in the same pseudorapidity range and spans a range of Bjorken-x down to x ≈ 0.01. The measured A[subscript LL] is consistent with model predictions for varying degrees of gluon polarization. The parity-violating asymmetry A[subscript L] is also measured and found to be consistent with zero. The transverse single-spin asymmetry A[subscript N] is measured over a previously unexplored kinematic range in Feynman-x and p[subscript T]. Such measurements may aid our understanding of the onset and kinematic dependence of the large asymmetries observed at more forward pseudorapidity (η ≈ 3) and their underlying mechanisms. The A[subscript N] results presented are consistent with a twist-3 model prediction of a small asymmetry over the present kinematic range.United States. Dept. of Energy. Office of Nuclear PhysicsUnited States. Dept. of Energy. Office of High Energy PhysicsNational Science Foundation (U.S.

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF

    Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

    Get PDF
    The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level

    Accuracy versus precision in boosted top tagging with the ATLAS detector

    Get PDF
    The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available

    Studies of the Energy Dependence of Diboson Polarization Fractions and the Radiation-Amplitude-Zero Effect in WZ Production with the ATLAS Detector

    Get PDF
    : This Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→lνl^{'}l^{'}(l,l^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13&nbsp;TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined. A nonzero fraction of events with two longitudinally polarized bosons is measured with an observed significance of 5.3 standard deviations in the region with 100200 GeV, where p_{T}^{Z} is the transverse momentum of the Z boson. This Letter also reports the first study of the radiation-amplitude-zero effect. Events with two transversely polarized bosons are analyzed for the ΔY(l_{W}Z) and ΔY(WZ) distributions defined respectively as the rapidity difference between the lepton from the W boson decay and the Z boson and the rapidity difference between the W boson and the Z boson. Significant suppression of events near zero is observed in both distributions. Unfolded ΔY(l_{W}Z) and ΔY(WZ) distributions are also measured and compared to theoretical predictions

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore