267 research outputs found

    A visibility and total suspended dust relationship

    Get PDF
    This study reports findings on observed visibility reductions and associated concentrations of mineral dust from a detailed Australian case study. An understanding of the relationship between visibility and dust concentration is of considerable utility for wind erosion and aeolian dust research because it allows visibility data, which are available from thousands of weather observation stations worldwide, to be converted into dust concentrations. Until now, this application of visibility data for wind erosion/dust studies has been constrained by the scarcity of direct measurements of co-incident dust concentration and visibility measurements. While dust concentrations are available from high volume air samplers, these time-averaged data cannot be directly correlated with instantaneous visibility records from meteorological observations. This study presents a new method for deriving instantaneous values of total suspended dust from time averaged (filter-based) samples, through reference to high resolution PM10 data. The development and testing of the model is presented here as well as a discussion of the derived expression in relation to other visibility-dust concentration predictive curves. The current study is significant because the visibility-dust concentration relationship produced is based on visibility observations made 10-100km from the dust sources. This distance from source makes the derived relationship appropriate for a greater number of visibility recording stations than widely-used previous relationships based on observations made directly at eroding sources. Testing of the new formula performance against observed total suspended dust concentrations demonstrates that the model predicts dust concentration relatively well (r2=0.6) from visibility. When considered alongside previous studies, the new relationship fits into the continuum of visibility-dust concentration outcomes existing for increasing distance-from-source. This highlights the important influence that distance to source has on the visibility-dust concentration relationship

    The role of skeletal micro-architecture in diagenesis and dating of Acropora palmata

    Get PDF
    Past variations in global sea-level reflect continental ice volume, a crucial factor for understanding the Earth's climate system. The Caribbean coral Acropora palmata typically forms dense stands in very shallow water and therefore fossil samples mark past sea-level. Uranium-series methods are commonly used to establish a chronology for fossil coral reefs, but are compromised by post mortem diagenetic changes to coral skeleton. Current screening approaches are unable to identify all altered samples, whilst models that attempt to correct for 'open-system' behaviour are not applicable across all diagenetic scenarios. In order to better understand how U-series geochemistry varies spatially with respect to diagenetic textures, we examine these aspects in relation to skeletal micro-structure and intra-crystalline amino acids, comparing an unaltered modern coral with a fossil A. palmata colony containing zones of diagenetic alteration (secondary overgrowth of aragonite, calcite cement and dissolution features). We demonstrate that the process of skeletogenesis in A. palmata causes heterogeneity in porosity, which can account for the observed spatial distribution of diagenetic features; this in turn explains the spatially-systematic trends in U-series geochemistry and consequently, U-series age. We propose a scenario that emphasises the importance of through-flow of meteoric waters, invoking both U-loss and absorption of mobilised U and Th daughter isotopes. We recommend selective sampling of low porosity A. palmata skeleton to obtain the most reliable U-series ages. We demonstrate that intra-crystalline amino acid racemisation (AAR) can be applied as a relative dating tool in Pleistocene A. palmata samples that have suffered heavy dissolution and are therefore unsuitable for U-series analyses. Based on relatively high intra-crystalline concentrations and appropriate racemisation rates, glutamic acid and valine are most suited to dating mid-late Pleistocene A. palmata. Significantly, the best-preserved material in the fossil specimen yields a U-series age of 165 ± 8 ka, recording a paleo sea-level of -35 ± 7 msl during the MIS 6.5 interstadial on Barbados

    A prospective, multi-site, cohort study to estimate incidence of infection and disease due to Lassa fever virus in West African countries (the Enable Lassa research programme)–Study protocol

    Get PDF
    Background Lassa fever (LF), a haemorrhagic illness caused by the Lassa fever virus (LASV), is endemic in West Africa and causes 5000 fatalities every year. The true prevalence and incidence rates of LF are unknown as infections are often asymptomatic, clinical presentations are varied, and surveillance systems are not robust. The aim of the Enable Lassa research programme is to estimate the incidences of LASV infection and LF disease in five West African countries. The core protocol described here harmonises key study components, such as eligibility criteria, case definitions, outcome measures, and laboratory tests, which will maximise the comparability of data for between-country analyses. Method We are conducting a prospective cohort study in Benin, Guinea, Liberia, Nigeria (three sites), and Sierra Leone from 2020 to 2023, with 24 months of follow-up. Each site will assess the incidence of LASV infection, LF disease, or both. When both incidences are assessed the LASV cohort (nmin = 1000 per site) will be drawn from the LF cohort (nmin = 5000 per site). During recruitment participants will complete questionnaires on household composition, socioeconomic status, demographic characteristics, and LF history, and blood samples will be collected to determine IgG LASV serostatus. LF disease cohort participants will be contacted biweekly to identify acute febrile cases, from whom blood samples will be drawn to test for active LASV infection using RT-PCR. Symptom and treatment data will be abstracted from medical records of LF cases. LF survivors will be followed up after four months to assess sequelae, specifically sensorineural hearing loss. LASV infection cohort participants will be asked for a blood sample every six months to assess LASV serostatus (IgG and IgM). Discussion Data on LASV infection and LF disease incidence in West Africa from this research programme will determine the feasibility of future Phase IIb or III clinical trials for LF vaccine candidates

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore