72 research outputs found

    Late-type galaxies observed with SAURON. Two-dimensional stellar and emission-line kinematics of 18 spirals

    Get PDF
    We present the stellar and gas kinematics of a sample of 18 nearby late-type spiral galaxies (Hubble types ranging from Sb to Sd), observed with the integral-field spectrograph SAURON at the 4.2-m William Herschel Telescope. SAURON covers the spectral range 4800-5380 A, allowing us to measure the Hbeta, Fe, Mgb absorption features and the emission in the Hbeta line and the [OIII], and [NI] doublets over a 33x41 arcsec field of view. The maps cover the nuclear region of these late-type galaxies and in all cases include the entire bulge. In many cases the stellar kinematics suggests the presence of a cold inner region, as visible from a central drop in the stellar velocity dispersion. The ionised gas is almost ubiquitous and behaves in a complicated fashion: the gas velocity fields often display more features than the stellar ones, including wiggles in the zero-velocity lines, irregular distributions, ring-like structures. The line ratio [OIII]/Hbeta often takes on low values over most of the field, probably indicating a wide-spread star formation.Comment: 34 pages, 24 figures. Accepted for publication in MNRAS. A version with full resolution figures is available at http://www.strw.leidenuniv.nl/sauron/papers/ganda2005_late_types.pd

    Chaos and Elliptical Galaxies

    Get PDF
    Recent results on chaos in triaxial galaxy models are reviewed. Central mass concentrations like those observed in early-type galaxies -- either stellar cusps, or massive black holes -- render most of the box orbits in a triaxial potential stochastic. Typical Liapunov times are 3-5 crossing times, and ensembles of stochastic orbits undergo mixing on time scales that are roughly an order of magnitude longer. The replacement of the regular orbits by stochastic orbits reduces the freedom to construct self-consistent equilibria, and strong triaxiality can be ruled out for galaxies with sufficiently high central mass concentrations.Comment: uuencoded gziped PostScript, 12 pages including figure

    The Fornax3D project: Assembly histories of lenticular galaxies from a combined dynamical and population orbital analysis

    Get PDF
    In order to assess the impact of the environment on the formation and evolution of galaxies, accurate assembly histories of such galaxies are needed. However, these measurements are observationally difficult owing to the diversity of formation paths that lead to the same present-day state of a galaxy. In this work, we apply a powerful new technique in order to observationally derive accurate assembly histories through a self-consistent combined stellar dynamical and population galaxy model. We present this approach for three edge-on lenticular galaxies from the Fornax3D project - FCC 153, FCC 170, and FCC 177 - in order to infer their mass assembly histories individually and in the context of the Fornax cluster. The method was tested on mock data from simulations to quantify its reliability. We find that the galaxies studied here have all been able to form dynamically-cold (intrinsic vertical velocity dispersion σz 50 km s-1) stellar disks after cluster infall. Moreover, the pre-existing (old) high angular momentum components have retained their angular momentum (orbital circularity λz > 0.8) through to the present day. Comparing the derived assembly histories with a comparable galaxy in a low-density environment - NGC 3115 - we find evidence for cluster-driven suppression of stellar accretion and merging. We measured the intrinsic stellar age-velocity-dispersion relation and find that the shape of the relation is consistent with galaxies in the literature across redshift. There is tentative evidence for enhancement in the luminosity-weighted intrinsic vertical velocity dispersion due to the cluster environment. But importantly, there is an indication that metallicity may be a key driver of this relation. We finally speculate that the cluster environment is responsible for the S0 morphology of these galaxies via the gradual external perturbations, or 'harassment', generated within the cluster

    The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    Get PDF
    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counterrotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counterrotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars

    The development of a protoplanetary disk from its natal envelope

    Full text link
    Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333-IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope(3,4). Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333-IRAS 4B a rich emission spectrum of H2O, at wavelengths 20-37 mu m, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62894/1/nature06087.pd

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Ionized outflows in local luminous AGN: what are the real densities and outflow rates?

    Get PDF
    We report on the determination of electron densities, and their impact on the outflow masses and rates, measured in the central few hundred parsecs of 11 local luminous active galaxies. We show that the peak of the integrated line emission in the active galactic nuclei (AGN) is significantly offset from the systemic velocity as traced by the stellar absorption features, indicating that the profiles are dominated by outflow. In contrast, matched inactive galaxies are characterized by a systemic peak and weaker outflow wing. We present three independent estimates of the electron density in these AGN, discussing the merits of the different methods. The electron density derived from the [S II] doublet is significantly lower than that found with a method developed in the last decade using auroral and transauroral lines, as well as a recently introduced method based on the ionization parameter. The reason is that, for gas photoionized by an AGN, much of the [S II] emission arises in an extended partially ionized zone where the implicit assumption that the electron density traces the hydrogen density is invalid. We propose ways to deal with this situation and we derive the associated outflow rates for ionized gas, which are in the range 0.001–0.5 M⊙ yr−1 for our AGN sample. We compare these outflow rates to the relation between ˙M out and LAGN in the literature, and argue that it may need to be modified and rescaled towards lower mass outflow rates

    A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star

    Get PDF
    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A∗ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈ 7650 km s-1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s-1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics
    • 

    corecore