161 research outputs found

    De gelukkige huurder:het bewaken van de kwaliteit en het tevreden stellen van de huurder binnen gemeente Helmond

    Get PDF

    De gelukkige huurder:het bewaken van de kwaliteit en het tevreden stellen van de huurder binnen gemeente Helmond

    Get PDF
    Het doel van dit rapport: Een meetinstrument ontwikkelen met betrekking tot klanttevredenheid van de huurders, waarin de kwaliteit van de dienstverlening en het vastgoed wordt gemeten. Aan de hand van dit rapport wordt er antwoord gegeven op de vraag: Aan welke onderdelen van de gemeentelijke dienstverlening hechten de huurders van maatschappelijk vastgoed waarde en wat voor belang hebben zij bij de kwaliteit van het vastgoed? In de oriĂ«ntatie wordt het onderzoeksonderwerp afgebakend. Vervolgens wordt het probleem beschreven en deelvragen geformuleerd. Aan de hand van de deelvragen en de oriĂ«ntatie kunnen er aan aantal verwachtingen worden geformuleerd. De volgende stap in het onderzoek is het vaststellen van de onderzoeksmethode. De onderzoeksmethode wordt in hoofdstuk 5 uitgewerkt waar antwoord wordt gegeven op de deelvragen die in hoofdstuk 3 aan bod komen. Als laatste wordt de uitwerking van de deelvragen gebruikt voor het opstellen en onderbouwen van de enquĂȘte waarin de tevredenheid van de huurders van het maatschappelijk vastgoed zal worden gemeten. Studentonderzoek in het kader van het thema Leefomgevin

    Twenty-five well-justified fossil calibrations for primate divergences

    Get PDF
    Phylogenies with estimates of divergence times are essential for investigating many evolutionary questions. In principle, “tip-dating” is arguably the most appropriate approach, with fossil and extant taxa analysed together in a single analysis, and topology and divergence times estimated simultaneously. However, “node-dating” (as used in many molecular clock analyses), in which fossil evidence is used to calibrate the age of particular nodes a priori, will probably remain the dominant approach, due to various issues with analysing morphological and molecular data together. Here, we provide a list of 25 well-justified node calibrations for primate divergences, following best practices: 16 within Haplorhini, four within Strepsirrhini, one for crown Primates, and four for older divergences within Euarchontoglires. In each case, we provide a hard minimum bound, and for 22 of these we also provide a soft maximum bound and a suggested prior distribution. For each calibrated node, we provide the age of the oldest fossil of each daughter lineage that descends from it, which allows use of the “CladeAge” method for specifying priors on node ages

    Dental topography of prosimian premolars predicts diet: A comparison in premolar and molar dietary classification accuracies

    Get PDF
    Objectives: This study tests whether (1) premolar topography of extant “prosimians” (strepsirrhines and tarsiers) successfully predicts diet and (2) whether the combination of molar and premolar topography yields higher classification accuracy than using either tooth position in isolation. Materials and Methods: Dental topographic metrics (ariaDNE, relief index, and orientation patch count rotated) were calculated for 118 individual matched‐pairs of mandibular fourth premolars (P4) and second molars (M2). The sample represents 7 families and 22 genera. Tooth variables were analyzed in isolation (P4 only; M2 only), together (P4 and M2), and combined (PC1 scores of bivariate principal component analyses of P4 and M2 for each metric). Discriminant function analyses were conducted with and without a measure of size (two‐dimensional surface area). Results: When using topography only, “prosimian” P4 shape predicts diet with a success rate that is slightly higher than that of M2 shape. When absolute size is included, premolars and molars perform comparably well. Including both premolar and molar topography (separately or combined) improves classification accuracy for every analysis beyond considering either in isolation. Classification accuracy is highest when premolar and molar topography and size are included. Discussion: Our findings indicate that molar teeth incompletely summarize the functional requirements of oral food breakdown for a given diet, and that the mechanism selecting for premolar form is more varied than what is expressed by molar teeth. Finally, our findings suggest that fossil P4s (in isolation or with the M2) can be used for meaningful dietary reconstruction of extinct primates

    Dental topography of prosimian premolars predicts diet: A comparison in premolar and molar dietary classification accuracies

    Get PDF
    Objectives: This study tests whether (1) premolar topography of extant “prosimians” (strepsirrhines and tarsiers) successfully predicts diet and (2) whether the combination of molar and premolar topography yields higher classification accuracy than using either tooth position in isolation. Materials and Methods: Dental topographic metrics (ariaDNE, relief index, and orientation patch count rotated) were calculated for 118 individual matched‐pairs of mandibular fourth premolars (P4) and second molars (M2). The sample represents 7 families and 22 genera. Tooth variables were analyzed in isolation (P4 only; M2 only), together (P4 and M2), and combined (PC1 scores of bivariate principal component analyses of P4 and M2 for each metric). Discriminant function analyses were conducted with and without a measure of size (two‐dimensional surface area). Results: When using topography only, “prosimian” P4 shape predicts diet with a success rate that is slightly higher than that of M2 shape. When absolute size is included, premolars and molars perform comparably well. Including both premolar and molar topography (separately or combined) improves classification accuracy for every analysis beyond considering either in isolation. Classification accuracy is highest when premolar and molar topography and size are included. Discussion: Our findings indicate that molar teeth incompletely summarize the functional requirements of oral food breakdown for a given diet, and that the mechanism selecting for premolar form is more varied than what is expressed by molar teeth. Finally, our findings suggest that fossil P4s (in isolation or with the M2) can be used for meaningful dietary reconstruction of extinct primates

    Complex Evolutionary History With Extensive Ancestral Gene Flow in an African Primate Radiation

    Get PDF
    Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation

    Ancient DNA of the pygmy marmoset type specimen Cebuella pygmaea (Spix, 1823) resolves a taxonomic conundrum

    Get PDF
    The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and SolimÔes-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.e., two subspecies, Cebuella pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea niveiventris (Lönnberg, 1940), was problematic given the uncertainty as to whether Spix's pygmy marmoset (Cebuella pygmaea pygmaea) was collected north or south of the Napo and SolimÔes-Amazonas rivers, making it unclear to which of the two newly revealed species the name pygmaea would apply. Here, we present the first molecular data from Spix's type specimen of Cebuella pygmaea, as well as novel mitochondrial genomes from modern pygmy marmosets sampled near the type locality (Tabatinga) on both sides of the river. With these data, we can confirm the correct names of the two species identified, i.e., C. pygmaea for animals north of the Napo and SolimÔes-Amazonas rivers and C. niveiventris for animals south of these two rivers. Phylogenetic analyses of the novel genetic data placed into the context of cytochrome b gene sequences from across the range of pygmy marmosets further led us to reevaluate the geographical distribution for the two Cebuella species. We dated the split of these two species to 2.54 million years ago. We discuss additional, more recent, subdivisions within each lineage, as well as potential contact zones between the two species in the headwaters of these rivers

    Comparison of dental topography of marmosets and tamarins (Callitrichidae) to other platyrrhine primates using a novel freeware pipeline

    Get PDF
    Dental topographic metrics (DTMs), which quantify different aspects of the shape of teeth, are powerful tools for studying dietary adaptation and evolution in mammals. Current DTM protocols usually rely on proprietary software, which may be unavailable to researchers for reasons of cost. We address this issue in the context of a DTM analysis of the primate clade Platyrrhini (“New World monkeys”) by: 1) presenting a large comparative sample of scanned second lower molars (m2s) of callitrichids (marmosets and tamarins), previously underrepresented in publicly available datasets; and 2) giving full details of an entirely freeware pipeline for DTM analysis and its validation. We also present an updated dietary classification scheme for extant platyrrhines, based on cluster analysis of dietary data extracted from 98 primary studies. Our freeware pipeline performs equally well in dietary classification accuracy of an existing sample of platyrrhine m2s (excluding callitrichids) as a published protocol that uses proprietary software when multiple DTMs are combined. Individual DTMs, however, sometimes showed very different results in classification accuracies between protocols, most likely due to differences in smoothing functions. The addition of callitrichids resulted in high classification accuracy in predicting diet with combined DTMs, although accuracy was considerably higher when molar size was included (90%) than excluded (73%). We conclude that our new freeware DTM pipeline is capable of accurately predicting diet in platyrrhines based on tooth shape and size, and so is suitable for inferring probable diet of taxa for which direct dietary information is unavailable, such as fossil species

    The evolution of mammalian brain size

    Get PDF
    Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size

    Identification of constrained sequence elements across 239 primate genomes

    Get PDF
    Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3–9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals
    • 

    corecore