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ABSTRACT

The pygmy marmoset, the smallest of the anthropoid
primates, has a broad distribution in Western
Amazonia. Recent studies using molecular and
morphological data have identified two distinct
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species separated by the Napo and Solimdes-
Amazonas rivers. However, reconciling this new
biological evidence with current taxonomy, i.e., two
subspecies, Cebuella pygmaea pygmaea (Spix,
1823) and Cebuella pygmaea niveiventris (Lénnberg,
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1940), was problematic given the uncertainty as to
whether Spix’s pygmy marmoset (Cebuella pygmaea
pygmaea) was collected north or south of the Napo
and Solimées-Amazonas rivers, making it unclear to
which of the two newly revealed species the name
pygmaea would apply. Here, we present the first
molecular data from Spix’s type specimen of
Cebuella pygmaea, as well as novel mitochondrial
genomes from modern pygmy marmosets sampled
near the type locality (Tabatinga) on both sides of
the river. With these data, we can confirm the correct
names of the two species identified, i.e., C. pygmaea
for animals north of the Napo and Solimbes-
Amazonas rivers and C. niveiventris for animals
south of these two rivers. Phylogenetic analyses of
the novel genetic data placed into the context of
cytochrome b gene sequences from across the
range of pygmy marmosets further led us to re-
evaluate the geographical distribution for the two
Cebuella species. We dated the split of these two
species to 2.54 million years ago. We discuss
additional, more recent, subdivisions within each
lineage, as well as potential contact zones between
the two species in the headwaters of these rivers.

Keywords: Historic DNA,; DNA taxonomy;
Pygmy marmoset; Cebuella pygmaea; C.
niveiventris; Amazon; Type specimen

INTRODUCTION

Pygmy marmosets (Cebuella) are the smallest of all living
anthropoid primates. They have a wide geographic distribution
across the upper Amazon region in northwestern Bolivia,
Brazil, Peru, Ecuador, and southern Colombia. A recent
molecular genetic study (Boubli et al., 2018) tested the validity
of separating this taxon into two subspecies, namely, Cebuella
pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea
niveiventris (Lénnberg, 1940), which have been recognized in
various studies, including da Cruz Lima (1945), Napier (1976),
van Roosmalen & van Roosmalen (1997), and Groves (2001,
2005). Using the mitochondrial cytochrome b (cyt b) gene and
ddRAD nuclear genome sequences from geographically
representative samples from both sides of the Solimdes River
(upper Amazon), Boubli et al. (2018) recovered two highly
supported clades that diverged 2.25 million years ago (Ma),
leading the authors to suggest the existence of two species of
Cebuella; one comprising pygmy marmosets sampled on the
northern side (left bank) of the Solimées and the other
comprising samples collected on the southern side (right
bank) (see also Porter et al., 2021). Reconciling the results of
these molecular and morphological analyses with the current
Cebuella taxonomy was confusing, however, due to the
uncertainty of the provenance of Spix’s holotype of lacchus
pygmaeus (Boubli et al., 2018; Rylands et al., 2009).

Johann Baptist von Spix described pygmaea based on a pet
pygmy marmoset given to him, probably by a local Tikuna
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Indian, during his visit to the upper Solimdes River on the
Brazilian-Colombian border (von Spix, 1823; von Spix & von
Martius, 1824). He assigned the type locality as near
Tabatinga, then a small village in Brazil, near the Colombian
border on the left bank of the Solimdes. In 1940, Lénnberg
described niveiventris as a distinct pygmy marmoset from the
Lago Ipixuna, approximately midway between the Tefé and
Purus rivers, a little west of Coari on the right (south) bank of
the Solimdes (Lénnberg, 1940). To describe this new taxon,
he compared his type series with specimens collected by the
Olalla brothers near the Brazilian village of Eirunepé (then
known as Joao Pessoa) on the right bank of the Jurua River
(see Boubli et al., 2018). For him, the Jurua pygmy marmosets
were typical pygmaea, even though Eirunepé is more than
200 km south of Tabatinga and on the opposite bank of the
Solimdes. In his publication, he affirmed that the Spix’s type
came from the right bank of the Solimbes, and thus the
opposite bank of Tabatinga (Lonnberg, 1940).

Doubt concerning the origin of Spix’s type specimen (left or
right bank of the Solimbdes at Tabatinga) complicated the
attribution of the proper names of the two clades identified by
Boubli et al. (2018). In that study, the pygmy marmosets from
the south (right) bank of the Solimdes formed a clade to the
exclusion of those from the north bank and northwards to the
right bank of the Japura River. If Spix’s type came from the
right bank of the Solimdes —specifically the mouth of the
Javari River, as stated by Lonnberg (1940)—niveiventris could
be a junior synonym of pygmaea. In this case, animals from
the left bank (north) bank of the Solimées would have no
available name and thus constitute a new taxon. On the other
hand, if the pygmaea type originally came from near
Tabatinga on the left bank of the Solimbes, then niveiventris
would be available for pygmy marmosets on the right bank of
the Solimdes and pygmaea would be available for pygmy
marmosets on the left bank, as suggested by van Roosmalen
& van Roosmalen (1997).

In the absence of novel historical evidence, obtaining
genetic material from Spix’s type specimen, as well as
material from the supposed type locality Tabatinga, presented
the best means to resolve this taxonomic deadlock. Since its
first use in museum collections in the 1980s, the retrieval and
amplification of ancient DNA (Higuchi et al., 1984; Paabo,
1985) has provided new insights into the evolution, biology,
and taxonomy of organisms across the tree of life (Burrell et
al., 2015). Perhaps the most famous example, the recovery of
the first fragments (Green et al., 2006; Noonan et al., 2006)
and finally complete genomes (Prifer et al.,, 2014) of
Neanderthals (Homo neanderthalensis), provided evidence of
interbreeding between this species and our own. Ancient DNA
can also be a way to improve museum collections, by
assigning likely origins and species designations to museum
specimens of uncertain provenance (Shepherd et al., 2013)
and ascertaining the accuracy of specimen data (Verry et al.,
2019). Additionally, many taxonomic puzzles have been
solved by analysis of DNA from museum specimens, including
equids (Orlando et al., 2009), monk seals (Scheel et al.,
2014), leaf monkeys (Roos et al., 2020), and most recently the
reclassification of the dire wolf from Canis dirus to Aenocyon
dirus, which had been largely ignored since it was first
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proposed in 1918 (Perri et al., 2021).

Ancient DNA from Spix’s type specimen of pygmaea could
help determine its relationship with the two clades of Cebuella
recovered previously (Boubli et al., 2018) and establish the
provenance of this specimen (i.e., right or left bank of the
Solimdes), allowing valid names to be attributed to the two
species of pygmy marmosets.

In this study, we present the first molecular data from Spix’s
type specimen of Cebuella pygmaea (housed in the Bavarian
State Collection of Zoology), as well as novel mitochondrial
genomes (mitogenomes) from modern pygmy marmosets
sampled in the purported type locality of Spix’s specimen,
near the town of Tabatinga. By placing these data in the
context of available cyt b mitochondrial barcode gene
sequences from pygmy marmosets across their distribution,
we provide the first range-wide phylogenetic analysis of this
taxon and confirm the correct naming of the two species of
Cebuella, thereby resolving the present taxonomic uncertainty.
We also re-evaluate the current geographical distribution
hypothesis for the two Cebuella species (Mittermeier et al.,
2013) based on our results and those of Porter et al. (2021).

MATERIALS AND METHODS

Holotype sampling and sequencing

Dried tissue skin scrapings were obtained from the stuffed
type specimen of pygmaea from the Bavarian State Collection
of Zoology, Munich, Germany. The skin scrapings were
sampled from the inner side of the damaged skin together with
pieces of the damaged skin. To minimize the risk of
environmental  (including human) and cross-sample
contamination, DNA extraction and library preparation were
performed in an ancient DNA laboratory, in which all
standards for such laboratories were implemented (UV light
decontamination, positive air pressure, separate sterile
working areas, protective clothing, and negative controls
during DNA extraction and library preparation for sequencing).
DNA from the holotype was extracted with a column-based
method that recovers small DNA fragments (Dabney et al.,
2013; Rohland et al., 2004). The DNA concentration was
measured with a Qubit 4.0 fluorometer (ThermoFisher
Scientific, USA), and DNA quality and degradation status were
checked on a Bioanalyzer 2100 (Agilent Technologies, USA).
Approximately, 50 ng of genomic DNA was subjected to
shotgun library preparation with a NEBNext Ultra 1| DNA
Library Prep Kit (E7103, New England Biolabs, USA) following
the standard protocols of the supplier. However, DNA
fragmentation prior to library preparation was omitted as the
DNA was already largely degraded (50-150 bp). A
sequencing library was also prepared from the DNA extraction
negative control. After end repair, adapter ligation, and ligation
cleanup (without size selection) using the kit's purification
beads, the libraries were indexed with multiplex oligos and
then cleaned again with the purification beads. Library
concentration and size distribution were measured with a
Qubit fluorometer and Bioanalyzer, respectively, and molarity
was quantified via quantitative polymerase chain reaction
(gPCR) using a NEBNext Library Quant Kit (New England
Biolabs, USA). Sequencing was conducted on an lllumina

HiSeq 4000 (100 bp single-end reads) at the NGS Integrative
Genomics (NIG) core unit at the University Medical Center
Géttingen, Germany. Raw sequencing reads were
demultiplexed  with lllumina  software.  Subsequent
bioinformatics analyses were performed with the Geneious
package v11.1.2. First, we trimmed and quality-filtered the
reads with BBDuk 37.64 in the BBTools package
(https://jgi.doe.gov/data-and-tools/bbtools/) and  removed
duplicate reads with Dedupe 37.64 (BBTools package); both
filtering steps were conducted with standard settings. For
assembly, reads were mapped onto the mitogenome of the C.
pygmaea reference mitogenome NC_021942.1 and a C.
niveiventris specimen (JT95, see below) using the Geneious
assembler. We applied different settings (high and custom
sensitivity, 5-10 iterations), while the advanced standard
settings remained unchanged. To check for potential DNA
damage (C to T or G to A changes) in historical specimens
(Rambaut et al., 2009), we calculated the base frequencies in
our C. pygmaea dataset with PAUP v4.0a (Swofford, 2002)
and compared the base frequencies of the holotype with those
of modern specimens. The newly produced mitogenome was
manually checked and then annotated with Geneious v11.1.2.

Modern specimen sampling and sequencing

For mitogenome analysis, we used samples of pygmy
marmosets from the town of Tabatinga, Brazil (Tabatinga 1
henceforth, TAB1), and from the upper Japura River (JAP720,
JAP723) and Jutai River (JT56, JT57, JT79, JT95). These
specimens were deposited in the Zoological Collection of the
Instituto Nacional de Pesquisas da Amazoénia (INPA),
Manaus. We extracted total genomic DNA from muscle
tissues preserved in alcohol using standard protocols
(Sambrook et al., 1989). Complete mitogenomes for these
specimens were generated via shotgun high-throughput
sequencing using a NEBNext Ultra Il FS DNA Library Prep Kit
(New England Biolabs, USA) (TAB1, JAP720, JT95) or the
Qiagen MagAttract HMW DNA Kit according to the
manufacturer's specifications (JAP723, JT56, JT57, JT79).
Before library preparation, 100 ng of DNA was fragmented
(200-450 bp) during the kit's fragmentation step. All follow-up
steps adhered to the kit protocols. Sequencing at NIG was
conducted on an lllumina HiSeq 4000 (50 bp single-end
reads) (TAB1, JAP720, JT95) or an lllumina NovaSeq6000
machine (150 bp paired-end reads (JAP723, JT56, JT57,
JT79). Read mapping and mitogenome assembly were
conducted as described for Spix’s holotype.

The mitochondrial cyt b gene was amplified for a second
individual from Tabatinga (Tabatinga 02) and another
individual from the Jutai River (JT32) by PCR with the primers
MonkeyGluF1 (5'-CCATGACTAATGATATGAAAARCC-3') and
MonkeyProR1 (5-AGAATSTCAGCTTTGGGTGTTG-3') (see
Boubli et al., 2018). The PCR products were purified using
ExoSap (Werle et al., 1994) and subjected to fluorescent dye-
terminator (ddNTP) sequencing following the manufacturer's
recommended protocols for BigDye sequencing chemistry
(Applied Biosystems, USA) and using the primers
MonkeyCytbF2 (5'-GGATCAARYAAYCCRTCAGG-3'),
MonkeyCytbR1 (5'-GCBCCTCAGAADGATATTTG-3'), and
MonkeyCytbR2 (5-CGTAGRATTGCRTATGCRAA-3') (Boubli
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et al., 2018). After the cycle sequencing reaction, the products
were precipitated with 100% ethanol/125 mmol/L EDTA
solution, re-suspended in Hi-Di formamide, and resolved on
an ABI 3130xlI automatic sequencer (Applied Biosystems,
USA). Sequences were assembled, edited, and trimmed using
Geneious v8.1.8.

Additional sequences

We supplemented the newly sequenced mitochondrial data
with cyt b sequencing data from previous publications (Boubli
et al.,, 2018; Porter et al., 2021), as well as mitogenomes
available in GenBank. Our final dataset consisted of cyt b
sequences from 65 individuals and full mitogenomes from 15
individuals. Of the 65 individuals included in the cyt b
alignment, 52 belonged to the genus Cebuella, including both
contemporary samples collected from wild primates and
museum samples, covering most of the geographical
distribution of pygmy marmosets (Table 1, Figures 1, 2).
Importantly, this included a pygmy marmoset from the town of
Benjamin Constant, Brazil, which is located on the right
(south) bank of the Solimdes, directly across the river from
Tabatinga (Figure 2). Additionally, we included 13 cyt b
sequences from other platyrrhine species (Aotus, Saguinus,
Callimico, Callithrix, Mico, and Callibella) to provide a broader
phylogenetic context. Alignment of the complete mitogenomes
included the newly sequenced pygmy marmosets from
Tabatinga (TAB1), Japura (JAP720, JAP723), Jutai (JT56,
JT57, JT79, JT95), and Spix’s pygmaea holotype (aDNA578),
as well as publicly available genomes from Cebuella
pygmaea, Callithrix jacchus, Callimico goeldii, Saguinus
oedipus, Aotus azarai, A. lemurinus, and A. nancymaae.
Details and accession numbers for all sequences included in
this study are presented in Supplementary Table S1.

Phylogenetic analyses

All sequencing alignments were performed using the MAFFT
v7.309 (Katoh & Standley, 2013) alignment plugin in Geneious
v9.1.8 and checked by eye. Using the alignment of cyt b
sequences from 65 individuals, including 52 Cebuella samples
and 13 other platyrrhines, we jointly estimated phylogeny and
diversification times under a strict clock model implemented in
BEAST v2.6.3 (Bouckaert et al., 2019). A strict clock model
was chosen as it is most appropriate for single locus
mitochondrial data, where rates are not expected to vary
across branches. To date the tree, we used a fossil calibration
dating the split between Aotinae and Callitrichidae based on
the presence of the stem Callitrichidae Lagonimico (de Vries &
Beck, in prep.). The Aotinae and Callitrichidae split was given
a hard minimum bound of 13.4 Ma following the age published
for Lagonimico (following the age listed by Kay, 2015), and a
generous soft maximum bound of 35.0 Ma based on the age
of the oldest stem catarrhine Catopithecus browni (using the
maximum age of the L-41 locality in the Fayum Depression
proposed by Seiffert, 2006). The calibration was given a log-
normal distribution with an S parameter of 0.8 and M
parameter of 1.755 to set the 95% quantile of the maximum
age at 35.0 Ma. We partitioned the cyt b sequence alignment
into three partitions based on codon position and used
bModelTest (Bouckaert & Drummond, 2017) to assign
appropriate substitution models to each partition. BEAST2
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was allowed to run for 50 million generations, with sampling at
every 5 000 trees and the first 10% discarded as burn in.
Additionally, we compared our topology to a smaller subset of
samples using full mitogenomes under a maximum-likelihood
approach in RAXML v8 (Stamatakis, 2014). Robustness of the
RAXML analyses was assessed via 1 000 bootstrap replicates.
Alignment of the full mitochondrial sequences, the xml files
used as input for BEAST2, and the command used to run
RAXML are provided in the Supplementary Materials.

RESULTS

Holotype sampling and sequencing

We successfully retrieved mitochondrial DNA from Spix’s
Cebuella pygmaea type specimen and sequenced a total of
14 726 unambiguous base pairs, representing 89.1% of the
complete mitogenomes, with an average sequencing depth of
3.8x. From the cyt b gene, we retrieved unambiguous base
pairs for 59.6% of the sequence length. Base frequencies in
the mitogenome of the C. pygmaea holotype (A=33.21%,
C=26.31%, G=13.27%, and T=27.21%) were similar to those
of modern specimens (mean: A=33.17%, C=26.51%,
G=13.09%, and T=27.23%), indicating that DNA damage in
the C. pygmaea holotype was minimal to zero.

Modern sampling and sequencing

We sequenced the mitogenomes for one of the newly
collected specimens of pygmy marmosets from Tabatinga
(TAB1) and six samples from other locations (JAP720,
JAP723 JT56, JT57, JT79, and JT95) and retrieved full
mitogenomes (100% coverage) from all modern samples
(TAB1: 1717.7x; JAP720: 61.4x; JAP723: 4778.3x; JT56:
606.7x, JT57: 1007.1x, JT79: 3555.2; JT95: 90.0x). The newly
sequenced mitogenomes of the holotype and modern samples
were deposited in GenBank and are available under
accession numbers MW?733803-MW733806 and
MZ747451-MZ747454 (Supplementary Table S1).

Phylogenetic analyses

BEAST2 analysis of the cyt b alignment supported a clear
separation of two Cebuella clades and dated the split between
clades at 2.54 Ma (95% highest posterior density (HPD)
interval: 1.51-3.82 Ma) (Figure 3). The same topology was
recovered by RAxML analysis of the full mitogenome
alignment of the sample subset, with 100% bootstrap support
(Figure 4). In both analyses, the sequence from Spix’s
holotype grouped with contemporary animals sampled in
Tabatinga on the north bank of the Solimbes River, and other
localities north of the Amazon/Solimdes, including the Japura
River, while the pygmy marmoset from the south bank of the
Solimdes, near Benjamin Constant, grouped with the second
clade. Of note, disregarding the missing data, the cyt b
sequence of the holotype was identical to that of the two
Tabatinga specimens.

Our results indicated a geographic distribution for C.
pygmaea that is limited by the Napo and Solimdes rivers in the
south, the Andes in the west, and the Japura-Caqueta in the
north (however, there are some discrepancies that are
discussed below). The distribution of C. niveiventris is
concordantly limited by the Napo and Solimdes rivers in the
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Table 1 List of voucher specimens and tissue samples used in this study and their localities

Sample ID Genus Species Collection site Latitude Longitude
EC_H1 Cebuella pygmaea Flor del Pantano (Group 1), Orellana, Ecuador -0.4517989 -76.864899
EC_H2 Cebuella pygmaea Flor del Pantano (Group 3), Orellana, Ecuador -0.4517989 -76.864899
EC_H3 Cebuella pygmaea Flor del Pantano (Group 4), Orellana, Ecuador -0.4517989 -76.864899
EC_H4 Cebuella pygmaea San Pablo, Sucumbios, Ecuador -0.2735964 -76.421896
EC_H5 Cebuella pygmaea San Pablo, Sucumbios, Ecuador -0.2735964 -76.421896
EC_H6 Cebuella niveiventris  Tiputini Biological Station, Orellana, Ecuador -0.6381041 —-76.149596
AMNH_72033 Cebuella pygmaea Curaray, Maynas, Loreto, Peru -2.3667 —74.0833
AMNH_72035 Cebuella pygmaea Curaray, Maynas, Loreto, Peru -2.3667 —74.0833
AMNH_72035 Cebuella pygmaea Curaray, Maynas, Loreto, Peru -2.3667 —74.0833
AMNH_72037 Cebuella pygmaea Curaray, Maynas, Loreto, Peru -2.3667 —74.0833
AMNH_72038 Cebuella pygmaea Curaray, Maynas, Loreto, Peru -2.3667 —74.0833
AMNH_73751 Cebuella niveiventris  Orosa, Mariscal Ramon Castilla, Loreto, Peru -3.5333 —72.1833
AMNH_74054 Cebuella niveiventris  Orosa, Mariscal Ramon Castilla, Loreto, Peru -3.5333 -72.1833
AMNH_74055 Cebuella niveiventris  Orosa, Mariscal Ramon Castilla, Loreto, Peru -3.5333 —72.1833
AMNH_74056 Cebuella niveiventris  Orosa, Mariscal Ramon Castilla, Loreto, Peru -3.5333 -72.1833
AMNH_74366 Cebuella pygmaea Apayacu, Maynas, Loreto, Peru -3.4833 —72.1833
AMNH_74367 Cebuella pygmaea Apayacu, Maynas, Loreto, Peru -3.4833 —72.1833
AMNH_74368 Cebuella pygmaea Apayacu, Maynas, Loreto, Peru -3.4833 —72.1833
AMNH_74369 Cebuella pygmaea Apayacu, Maynas, Loreto, Peru -3.4833 —72.1833
AMNH_75280 Cebuella niveiventris  Sarayacu, Ucayali, Loreto, Peru —6.7833 -75.1167
AMNH_76327 Cebuella pygmaea Sarayacu, Ucayali, Loreto, Peru -6.7833 -75.1167
AMNH_76328 Cebuella pygmaea Sarayacu, Ucayali, Loreto, Peru -6.7833 -75.1167
AMNH_98312 Cebuella pygmaea lquitos, Maynas, Loreto, Peru -3.7667 -73.25
FMNH_54290 Cebuella pygmaea Rio Copataza, Pastaza, Ecuador -2.11667 —77.449997
FMNH_71003 Cebuella pygmaea Leticia, Amazonas, Colombia —-4.15 —69.950003
FMNH_87136 Cebuella niveiventris  Rio Maniti, Santa Cecilia, Maynas, Peru —-3.4333354 -72.766674
FMNH_87137 Cebuella niveiventris  Rio Maniti, Santa Cecilia, Maynas, Peru -3.4333354 -72.766674
FMNH_88997 Cebuella niveiventris  Alto Yavari Mirim, boca Yaque, Mariscal Ramon, Peru —4.4499988 —71.783336
FMNH_88998 Cebuella niveiventris  Alto Yavari Mirim, boca Yaque, Mariscal Ramo, Peru —-4.4499988 -71.783336
FMNH_122750 Cebuella niveiventris  Quistococha, Maynas, Loreto, Peru -3.8333284 -73.266669
FMNH_122752 Cebuella niveiventris  Quistococha, Maynas, Loreto, Peru -3.8333284 -73.266669
UMMZ_82856 Cebuella pygmaea Rio Napo, Intillama, Napo, Ecuador -0.9829959 -77.817001
UMMZ_82857 Cebuella pygmaea Rio Napo, Intillama, Napo, Ecuador -0.9829959 -77.817001
JAP720 Cebuella pygmaea Rio Japura, Amazonas, Brazil -1.8424722 -69.022833
JAP723 Cebuella pygmaea Rio Japura, Amazonas, Brazil -1.8424722  -69.022833
JAP724 Cebuella pygmaea Rio Japura, Amazonas, Brazil -1.8424722 -69.022833
Tabatinga_01 Cebuella pygmaea Tabatinga, Amazonas, Brasil —4.241472 —69.944472
Tabatinga_02 Cebuella pygmaea Tabatinga, Amazonas, Brasil —4.238944 —69.944 667
CTGA-M170 Cebuella niveiventris  lgarapé do Jacinto, Tapaua, Amazonas, Brazil 5.7 -63.2

FR20 Cebuella niveiventris Lago Xada, Amazonas, Brazil -5.2620278 -60.722944
CCM19 Cebuella niveiventris  Benjamin Constant, Amazonas, Brazil —4.382494 —70.008512
MNFS1019 Cebuella niveiventris  Ocidente, Acre, Brazil —-8.5722222 -72.8
MNFS1020 Cebuella niveiventris  Ocidente, Acre, Brazil —-8.5722222 -72.8
MNFS1361 Cebuella niveiventris  Ocidente, Acre, Brazil —-8.5722222 -72.8
CCM23 Cebuella niveiventris ~ Codajas, Amazonas, Brazil -3.894 248 —-62.071256
CCM251 Cebuella niveiventris  Lago Matupiri, Rio Madeira -5.5986111 —61.006944
JT79 Cebuella niveiventris  Rio Jutai, Brazil -3.31174 —67.532681
JT95 Cebuella niveiventris  Rio Jutai, Brazil -3.735624 —67.469317
JT57 Cebuella niveiventris  Rio Jutai, Brazil -3.218021 —-67.334289
JT56 Cebuella niveiventris  Rio Jutai, Brazil -3.218021 —67.334289
JT32 Cebuella niveiventris  Rio Jutai, Brazil -3.21801 —67.334296
Holotype Cebuella pygmaea Adjacent to the town of Tabatinga, Brazil
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Figure 2 Close up map of western Amazonia showing precise locations of samples used in this study collected between the mouth of the
Javari and Ucayali rivers, which are both south bank tributaries of the Solimées (Amazonas)

north and the Madeira River in the east. At this stage, our data
do not offer unambiguous evidence to propose a southern limit
for C. niveiventris (Figure 5).

Our BEAST?2 tree indicated further sub-structuring within
both C. pygmaea and C. niveiventris. Within the C. pygmaea
clade, animals from the region between the Putumayo and
Japura rivers clustered separately from the animals collected
south of the Putumayo. In the C. niveiventris clade, animals
from the eastern extent of the species range, in the area
between the Purus and Madeira rivers (CTGA-M170, FR20,
CCM251), formed a cluster mostly separate from animals west
of the Purus. While C. niveiventris west of the Ucayali and
south of the Napo formed a subcluster in the phylogeny
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(Figure 3).

Four of the museum specimens labeled as having been
collected south of the Napo and Solimdes rivers fell within the
C. pygmaea clade (Figure 3, marked with asterisks, Figure 1):
FMNH (Field Museum of Natural History) 54290, AMNH
(American Museum of Natural History) 76327, AMNH 76328,
and AMNH 98312.

DISCUSSION

Based on their phylogenetic analysis using newly generated
genomic data for a relatively large sample of individuals,
Boubli et al. (2018) proposed the division of pygmy marmosets
into two species of Cebuella (see Boubli et al., 2018; Garbino
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Figure 3 BEAST2 cytochrome b time-tree for 65 primate samples, including 52 pygmy marmosets and 13 other taxa as outgroups
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et al., 2019; see also Porter et al., 2021) separated by the
Solimbes-Amazonas River. However, as pointed out by these
authors, confirming the names to be attributed to these two
newly identified clades was hindered by the uncertainty of the
type locality of Spix’s Cebuella pygmaea (Lénnberg, 1940; see
Boubli et al., 2018; Garbino et al., 2019). Garbino et al. (2019)
provided an interpretation of the historic literature and
concluded that the type specimen was, in fact, obtained north
of the Solimdes River, contra Lonnberg (1940), who stated
that its origin was the mouth of the Javari River, south of the
Solimdes. Our results resolve this issue definitively, as we
show that Spix’s type specimen is more closely related to
contemporary pygmy marmosets from Tabatinga, on the north
bank of the Solimdes River, than to animals from the south
bank. We also reaffirm that museum collections are a valuable
source for genetic and taxonomic investigations of primates,
particularly of name-bearing types, and highly damaged DNA,
as is typically extracted from such old material, can be
analyzed with modern  high-throughput  sequencing
technologies.

The holotype and modern Tabatinga pygmy marmosets
formed a clade with samples from the right bank of the Japura

River and other locations north of the Solimdes River that split
from the southern clade, south of the Solimdes approximately
2.54 Ma, confirming the separation of the genus Cebuella into
two species: i.e., Cebuella pygmaea (Spix, 1823), north of the
Solimdes River, and Cebuella niveiventris Lénnberg, 1940,
south of the Solimdes in that region (in agreement with Boubli
etal., 2018).

The morphological analyses of Garbino et al. (2019) and
Porter et al. (2021) identified the Napo River as the southern
range limit of C. pygmaea in Peru and Ecuador. Previously, it
had been thought that the divide was marked by the
Amazonas-Marafién rivers, extending west to the left bank of
the Pastaza River (Mittermeier et al., 2013; van Roosmalen &
van Roosmalen, 1997). Pygmy marmosets sampled south of
the Solimdes-Amazonas and Napo rivers largely grouped with
the C. niveiventris clade. The sample from Tiputini, Ecuador
(with haplotype EC_H6, Porter et al., 2021) collected on the
right bank of the upper Napo was clearly nested in the C.
niveiventris clade.

Interestingly, as stated by Porter et al. (2021), four of the
museum specimens are noteworthy exceptions and fall within
the C. pygmaea clade, despite sampling locations south of the
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Napo River. We have highlighted these specimens with
asterisks in Figure 3. Sample FMNH 54290 was collected in
Ecuador, near the headwaters of the Copataza River on 8
April 1939 by R. Olalla, according to Chicago’s FMNH records.
The collecting locality may be inaccurate, or the individual may
have been moved by people who use them as pets
(something that continues today, de la Torre pers. obs.), or
changes in rivers due to meandering caused individuals from
one bank to be isolated on islands that later connected to the
other bank, allowing admixture between populations (see
Boubli et al., 2018; Porter et al., 2021). FMNH 54290 was
classified by Garbino et al. (2019) as C. niveiventris (Type "1")
based on its pelage pattern (Figure 6). Considering that it
carries a C. pygmaea mitochondrial haplotype, this could be a
case of admixture causing mitochondrial introgression. Such
admixture events are not uncommon in the headwaters of
Amazonian rivers (Naka et al., 2012; Weir et al., 2015), but
further sampling in this area is needed to test this hypothesis.

The case for samples AMNH 76327, AMNH 76328, and
AMNH 98312 is harder to reconcile as they were collected at
the southern edge of the distribution of C. niveiventris, yet all
three grouped with the C. pygmaea clade in our analysis.
Samples AMNH 76327 and AMNH 76328 were collected for
the AMNH by “Olalla & Hijos” on 16 March and 4 April 1927,
respectively. The collection sites for these specimens are
close to that of a third specimen, AMNH 75280, which was
collected by the same group later that year (Haven Wiley,
2010). Sample AMNH 98312 was collected on 28 January
1929 and is labeled as coming from near Iquitos, a known
wildlife trading hub.

It is possible that the location information available for these
specimens is inaccurate. In fact, the provenance of other
specimens collected by the Olalla brothers has previously
been called into question (Haven Wiley, 2010; Marsh, 2014).
The most problematic specimens appear to be those first
purchased by Harvey Bassler (e.g., AMNH 98312, included
here) before coming to the AMNH, as the Olalla brothers did
not reliably record which riverbank was sampled until late
1926 (Haven Wiley, 2010). Several of the samples included
here were collected during an expedition when the Olalla
brothers appear to have realized the importance of river
boundaries and began purposefully collecting on opposite
sides of a river, detailing the bank clearly in their sample notes
(Haven Wiley, 2010). Samples AMNH 74366-74369 and
AMNH 73751, 74054-74056 were collected during this

Figure 6 Underpart view of Chicago’s Field Museum of Natural
History voucher specimen FMNH 54290, Cebuella niveiventris
Type “1” (sensu Garbino et al, 2019, photo by J.E.S.
Villavicencio)
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expedition and clearly separated into pygmaea and
niveiventris based on our analysis, in accordance with
provenance (Figure 3). For samples collected prior to this, it is
often unclear whether they were collected from the left or right
bank, as in the case of AMNH 72033-38 collected in late
1925. Our results, however, provide strong evidence that
these were collected from the left (northern) bank of the Napo
River (see Porter et al., 2021).

As for samples AMNH 76327-28 and 75280 (discussed
above), it is possible that they were collected on opposite
banks of the Ucayali River, but not explicitly marked as such,
despite being collected after 1926. In this case, AMNH 75280
more likely originated from the right (eastern) bank, as it
groups closely with other samples collected on this side (e.g.,
FMNH 88997, AMNH 74054). In fact, a detailed analysis of the
precise collection sites in that Olalla expedition by Haven
Wiley (2010) shows that AMNH 76327 and AMNH 76328 were
collected from a different basecamp site than AMNH 75280.
The AMNH 76327-28 specimens were collected when the
Olalla brothers’ camp was located at site #2 on the left bank of
the Ucayali, and AMNH 75280 was collected at site #3 on the
right bank of the Ucayali (see Haven Wiley, 2010, Figure 5,
pp. 21). While this would explain the lack of relatedness
between AMNH 75280 and AMNH 76327 and 76328, the
identity of the latter two as C. pygmaea remains puzzling.
Porter et al. (2021) stated that this may be due to a continuous
distribution of C. pygmaea around the headwaters of the Napo
and Pastaza rivers, along the eastern foothills of the Andes
and up to the western bank of the Ucayali in a horseshoe-
shaped distribution. In this case, the distribution of C.
niveiventris in western Amazonia would be nested within the
broad distribution of C. pygmaea (see Figure 4 of Porter et al.
2021 and question marks in Figure 5 here). We agree with the
intriguing hypothesis of Porter et al. (2021) regarding the
geographical distribution of C. pygmaea, which would
accommodate our suggestion that FMNH 54290 is potentially
an admixed individual as there are no natural barriers
separating the two species where their ranges meet around
the foothills of the Andes and upper reaches of the rivers in
this region.

Hershkovitz (1977) and Garbino et al. (2019) reported great
variability in Cebuella pelage coloration to the extent that
Hershkovitz (1977) concluded that there was only one pygmy
marmoset species, and all variation was intraspecific. On the
other hand, Garbino et al. (2019) restricted this variability to C.
niveiventris. After examining 44 museum voucher specimens
of Cebuella, they proposed classification of the C. niveiventris
vouchers into three somewhat discrete morphotypes.
Predominant morphotype “3” accounted for 71% of the
examined vouchers and consisted of the typical, white-bellied
C. niveiventris sensu Lonnberg (1940). Morphotypes “1” and
“2” consisted of animals with much darker underparts with
varying degrees of white fur present and accounted for the
minority of the samples. This is the case for FMNH 54290,
which was classified by Garbino et al. (2019) as morphotype
“1” (see above).

Animals collected by the Olalla brothers in Eirunepé on the
upper Jurua in Brazil have dark underparts and were classified
by Garbino et al. (2019) as C. niveiventris under character

states “1” and “2”. This is what led Lonnberg (1940) to classify
them as typical C. pygmaea (see Boubli et al., 2018).
Likewise, Boubli et al. (2018) proposed a new morph of pygmy
marmosets from the upper Jurua in Acre, Brazil, and identified
them as C. cf. pygmaea. These specimens (MNFS_1019-20,
MNFS_1361) are morphologically similar to those collected by
the Olalla brothers in Eirunepé, in that their underparts are
darker than the typical C. niveiventris (see Boubli et al., 2018).
Such variability in underpart coloration in C. niveiventris led
Porter et al. (2021) to disregard such variation as meaningful
for taxonomic classification. In fact, Soini (1988) and de la
Torre (pers. obs.) report seeing great within-population pelage
color variation in Ecuador. If we consider the distribution
hypothesis for C. pygmaea proposed by Porter et al. (2021)
(see above), then we should expect possible contact between
the two species in the southern and western edges of the
distribution of C. niveiventris and potential gene flow between
the two species in the upper reaches of the Napo, Pastaza,
Ucayali, and possibly Jurua, which could account for the color
pattern variation observed in pygmy marmosets in these
regions. Previous studies have reported on gene flow and
hybridization among populations of different primate species in
the New World, e.g., between Saguinus midas and S. bicolor
(Farias et al., 2015), Plecturocebus cinerascens, P. parecis,
and P. bernhardi (Byrne et al., 2021), and P. moloch and P.
vieirai (Boubli et al., 2019), as well as for other organisms on
other continents (e.g., frogs in Southeast Asia — Chan et al.,
2020; Darwin’s finches in the Galapagos — Lamichhaney et al.,
2020; Gazelles in Africa — Garcia-Erill et al., 2021). As such,
this hypothesis deserves further investigation using nuclear
DNA data.

Our study revealed greater lineage diversity in pygmy
marmosets than ever before. In addition to the clear
separation of pygmy marmosets in two distinct species, Porter
et al. (2021) and our analysis also identified further structuring
in both species, thus revealing four reciprocally monophyletic
lineages in Cebuella: i.e., two C. pygmaea lineages separated
by the Putumayo River and two C. niveiventris lineages
separated by the Purus River. However, such structuring
should be considered with caution as only one locus was used
in some cases (cyt b). Thus, more robust nuclear data are
needed to better understand the phylogenetic diversity of
pygmy marmosets.

CONCLUSIONS

In this study, we resolved a long-standing taxonomical
conundrum surrounding the origin of Spix's pygmaea type by
sequencing its mitogenomes from historical DNA.
Unambiguously, our results showed that the type is closely
related to the pygmy marmosets that currently live around the
town of Tabatinga in Brazil. Thus, our data support the
classification of pygmy marmosets as C. pygmaea and C.
niveiventris. This is the first study to successfully use historic
DNA from a type specimen to address an important
taxonomical question in New World primates, thus paving the
way for future studies addressing similar issues in other
platyrrhines.

Our results and those of Porter et al. (2021) considerably
expand the range of C. niveiventris to the west and raise the
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possibility that the headwaters of these western Amazon
tributaries may not, in their uppermost reaches, be barriers,
and thus the distribution of C. pygmaea may be much larger
than previously thought.

Once considered a single and widespread species, we
show that Cebuella is a diverse taxon, with two full species
and further cryptic diversification within them. As such, we
now have four or even five (see Porter et al., 2021) evident
lineages of significance as units for conservation management
(sensu Moritz, 1994).
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