15 research outputs found

    The Spitzer Survey of Stellar Structure in Galaxies (S^4G)

    Get PDF
    The Spitzer Survey of Stellar Structure in Galaxies S^4G is an Exploration Science Legacy Program approved for the Spitzer post-cryogenic mission. It is a volume-, magnitude-, and size-limited (d < 40 Mpc, |b| > 30 degrees, m_(Bcorr) < 15.5, D25>1') survey of 2,331 galaxies using IRAC at 3.6 and 4.5 microns. Each galaxy is observed for 240 s and mapped to > 1.5 x D25. The final mosaicked images have a typical 1 sigma rms noise level of 0.0072 and 0.0093 MJy / sr at 3.6 and 4.5 microns, respectively. Our azimuthally-averaged surface brightness profile typically traces isophotes at mu_3.6 (AB) (1 sigma) ~ 27 mag arcsec^-2, equivalent to a stellar mass surface density of ~ 1 Msun pc^-2. S^4G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local Universe. This paper introduces the survey, the data analysis pipeline and measurements for a first set of galaxies, observed in both the cryogenic and warm mission phase of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at mu_3.6 (AB) = 25.5 and 26.5 mag arcsec^-2 (equivalent to ~ mu_B (AB) =27.2 and 28.2 mag arcsec^-2, respectively). These measurements will form the initial S^4G catalog of galaxy properties. We also measure the total magnitude and the azimuthally-averaged radial profiles of ellipticity, position angle, surface brightness and color. Finally, we deconstruct each galaxy using GALFIT into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together these data products will provide a comprehensive and definitive catalog of stellar structures, mass and properties of galaxies in the nearby Universe.Comment: Accepted for Publication in PASP, 14 pages, 13 figure

    A covariant approach to gravitational lensing

    No full text
    Includes bibliography.The main focus of this thesis is to study the properties of null geodesics in general relativistic models. This thesis is divided into two parts. In the first part, we introduce the (1+3)-covariant approach which will be used in our study of null geodesics and their applications to gravitational lensing. The dynamics of the null congruence can be better understood through the propagation and constraint equations in the direction of the congruence. Thus, we derive these equations after describing the geomentry of a ray. We also derive a general from of the null geodesic deviation equation (NGDE) which can be used in any given space-time. Various applications of this equation are studied, including its role in determining area-distance relations in an Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model. We also use the NGDE in deriving a covariant form of the angle of deflection, showing its versatile applications in gravitational lensing theory

    Early-type Galaxies with Tidal Debris and Their Scaling Relations in the Spitzer Survey of Stellar Structure in Galaxies (S4^4G)

    Get PDF
    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early type galaxies (T \leq 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The tidal debris includes features such as shells, ripples and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, was used to quantify the residual tidal features. The tidal debris contributes ~3 - 10% to the total 3.6 {\mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the Fundamental Plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase-mixing so that their structural properties become similar to those of the non-interacting early type galaxies.Comment: 20 pages, 10 figures, 4 tables, accepted for publication in Ap

    The Mass Profile and Shape of Bars in the Spitzer Survey of Stellar Structure in Galaxies (S4^4G): Search for an Age Indicator for Bars

    Get PDF
    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm\mu m image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T>>0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T\sim0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disk, bars initially have an exponential (disk-like) profile which evolves over time, trapping more stars into the boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z>>1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.Comment: 11 pages, 7 figures, accepted for publication in Ap

    Unveiling the Structure of Barred Galaxies at 3.6 \ensuremath\mum with the Spitzer Survey of Stellar Structure in Galaxies (S4^4G). I. Disk Breaks

    Get PDF
    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm\mu {\rm m} images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T \geq 0.1, the break radius to bar radius, rbr/Rbarr_{\rm br}/R_{\rm bar}, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad Resonance (OLR) of the bar, and thus moves outwards as the bar grows. For galaxies with small bulges, B/T << 0.1, rbr/Rbarr_{\rm br}/R_{\rm bar} spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.Comment: Accepted for publication in ApJ, 21 pages, 13 figures, 2 table

    The Odd Offset between the Galactic Disk and Its Bar in NGC\raisebox-0.5ex\textasciitilde3906

    Get PDF
    We use mid-infrared 3.6 and 4.5microns imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ~720 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter sub structure in the galaxy's halo or from a recent interaction with a fast moving neighbor which remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar / kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.Comment: 18 pages, 8 figures, ApJ in pres

    The Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Get PDF
    The Spitzer Survey of Stellar Structure in Galaxies S^4G is an Exploration Science Legacy Program approved for the Spitzer post-cryogenic mission. It is a volume-, magnitude-, and size-limited (d 30 degrees, m_(Bcorr) 1') survey of 2,331 galaxies using IRAC at 3.6 and 4.5 microns. Each galaxy is observed for 240 s and mapped to > 1.5 x D25. The final mosaicked images have a typical 1 sigma rms noise level of 0.0072 and 0.0093 MJy / sr at 3.6 and 4.5 microns, respectively. Our azimuthally-averaged surface brightness profile typically traces isophotes at mu_3.6 (AB) (1 sigma) ~ 27 mag arcsec^-2, equivalent to a stellar mass surface density of ~ 1 Msun pc^-2. S^4G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local Universe. This paper introduces the survey, the data analysis pipeline and measurements for a first set of galaxies, observed in both the cryogenic and warm mission phase of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at mu_3.6 (AB) = 25.5 and 26.5 mag arcsec^-2 (equivalent to ~ mu_B (AB) =27.2 and 28.2 mag arcsec^-2, respectively). These measurements will form the initial S^4G catalog of galaxy properties. We also measure the total magnitude and the azimuthally-averaged radial profiles of ellipticity, position angle, surface brightness and color. Finally, we deconstruct each galaxy using GALFIT into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together these data products will provide a comprehensive and definitive catalog of stellar structures, mass and properties of galaxies in the nearby Universe.Comment: Accepted for Publication in PASP, 14 pages, 13 figure
    corecore