1,698 research outputs found

    Determinación de curvas para la estimación del contenido de humedad de diez maderas de frondosas mediante medidas de resistencia eléctrica

    Get PDF
    Accuracy in moisture content measurement is of great importance in the assurance of wood product quality and isnecessary to meet administrative and normative requirements. Improving the accuracy of resistance-type moisture meters,and meeting the normative demands of their annual calibration, requires the use of optimised curves relating electricalresistance to moisture content for the most commercially important wood types. The Samuelsson model, adjusted bylinear regression techniques, was used to describe the relationship between the electrical resistance and moisture contentof seven boreal and three tropical hardwoods available on the Spanish market. The curves produced can be used to predictthe moisture contents of these hardwoods via the measurement of their electrical resistance with an error of just ± 1.0%.These curves should also prove of great use in the calibration of wood resistance-type moisture meters.La precisión en la medida del contenido de humedad juega un papel fundamental no solo en el aseguramiento de lacalidad de los productos de la madera sino, también, en el cumplimiento de las exigencias normativas y administrativasque gravitan sobre los productos. Para ser capaces de mejorar la precisión de la medida tomada por los xilohigrómetrosde resistencia y cumplir con las exigencias normativas de calibración anual de los equipos, es necesario obtener curvasoptimizadas que relacionen la resistencia eléctrica con la humedad en las maderas de mayor importancia comercial.El modelo de Samuelsson, Log[Log(R) + 1] = a.h + b, ajustado mediante técnicas de regresión lineal, fue usado paradescribir la relación existente entre la resistencia eléctrica de la madera (R) y el contenido de humedad (h) de sietemaderas de frondosas boreales y tres de frondosas tropicales comercialmente disponibles en el mercado español. Lascurvas obtenidas pueden ser usadas para la predicción del contenido de humedad de dichas maderas, con un errormáximo de ± 1.0%, mediante la medición de su resistencia eléctrica. Estas curvas serían también de interés para lacalibración de medidores de humedad de madera por resistencia eléctrica

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Contrasting mechanisms underlie short‐ and longer‐term soil respiration responses to experimental warming in a dryland ecosystem

    Get PDF
    Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.This research was funded by the European Research Council (ERC Grant agreements 242658 [BIOCOM] and 647038 [BIODESERT]). M.D. is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU-15/00392). P.G.-P. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-024766-I). S.A. acknowledges the Spanish MINECO for financial support via the DIGGING_DEEPER project through the 2015–2016 BiodivERsA3/FACCE-JPI joint call for research proposals. F.T.M. and S.A. acknowledge support from the Generalitat Valenciana (CIDEGENT/2018/041). C.C.-D. acknowledges support from the European Research Council (ERC Grant 647038 [BIODESERT])

    A Molecular Platinum Cluster Junction: A Single-Molecule Switch

    Full text link
    We present a theoretical study of the electronic transport through single-molecule junctions incorporating a Pt6 metal cluster bound within an organic framework. We show that the insertion of this molecule between a pair of electrodes leads to a fully atomically engineered nano-metallic device with high conductance at the Fermi level and two sequential high on/off switching states. The origin of this property can be traced back to the existence of a HOMO which consists of two degenerate and asymmetric orbitals, lying close in energy to the Fermi level of the metallic leads. Their degeneracy is broken when the molecule is contacted to the leads, giving rise to two resonances which become pinned close to the Fermi level and display destructive interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am. Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ

    Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles

    Get PDF
    We investigate by first-principles simulations the resonant electron-transfer lifetime from the excited state of an organic adsorbate to a semiconductor surface, namely isonicotinic acid on rutile TiO2_2(110). The molecule-substrate interaction is described using density functional theory, while the effect of a truly semi-infinite substrate is taken into account by Green's function techniques. Excitonic effects due to the presence of core-excited atoms in the molecule are shown to be instrumental to understand the electron-transfer times measured using the so-called core-hole-clock technique. In particular, for the isonicotinic acid on TiO2_2(110), we find that the charge injection from the LUMO is quenched since this state lies within the substrate band gap. We compute the resonant charge-transfer times from LUMO+1 and LUMO+2, and systematically investigate the dependence of the elastic lifetimes of these states on the alignment among adsorbate and substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry

    EXPORT: optical photometry and polarimetry of Vega-type and pre-main sequence stars

    Get PDF
    This paper presents optical UBVRI broadband photo-polarimetry of the EXPORT sample obtained at the 2.5m Nordic Optical Telescope. The database consists of multi-epoch photo-polarimetry of 68 pre-main-sequence and main-sequence stars. An investigation of the polarization variability indicates that 22 objects are variable at the 3sigma level in our data. All these objects are pre-main sequence stars, consisting of both T Tauri and Herbig Ae/Be objects while the main sequence, Vega type and post-T Tauri type objects are not variable. The polarization properties of the variable sources are mostly indicative of the UXOR-type behaviour; the objects show highest polarization when the brightness is at minimum. We add seven new objects to the class of UXOR variables (BH Cep, VX Cas, DK Tau, HK Ori, LkHa 234, KK Oph and RY Ori). The main reason for their discovery is the fact that our data-set is the largest in its kind, indicating that many more young UXOR-type pre-main sequence stars remain to be discovered. The set of Vega-like systems has been investigated for the presence of intrinsic polarization. As they lack variability, this was done using indirect methods, and apart from the known case of BD +31.643, the following stars were found to be strong candidates to exhibit polarization due to the presence of circumstellar disks: 51 Oph, BD +31.643C, HD 58647 and HD 233517.Comment: A&A accepte

    Dynamics of the circumstellar gas in the Herbig Ae stars BF Orionis, SV Cephei, WW Vulpeculae and XY Persei

    Get PDF
    We present high resolution (lambda / Delta_lambda = 49000) echelle spectra of the intermediate mass, pre-main sequence stars BF Ori, SV Cep, WW Wul and XY Per. The spectra cover the range 3800-5900 angstroms and monitor the stars on time scales of months and days. All spectra show a large number of Balmer and metallic lines with variable blueshifted and redshifted absorption features superimposed to the photospheric stellar spectra. Synthetic Kurucz models are used to estimate rotational velocities, effective temperatures and gravities of the stars. The best photospheric models are subtracted from each observed spectrum to determine the variable absorption features due to the circumstellar gas; those features are characterized in terms of their velocity, v, dispersion velocity, Delta v, and residual absorption, R_max. The absorption components detected in each spectrum can be grouped by their similar radial velocities and are interpreted as the signature of the dynamical evolution of gaseous clumps with, in most cases, solar-like chemical composition. This infalling and outflowing gas has similar properties to the circumstellar gas observed in UX Ori, emphasizing the need for detailed theoretical models, probably in the framework of the magnetospheric accretion scenario, to understand the complex environment in Herbig Ae (HAe) stars. WW Vul is unusual because, in addition to infalling and outflowing gas with properties similar to those observed in the other stars, it shows also transient absorption features in metallic lines with no obvious counterparts in the hydrogen lines. This could, in principle, suggest the presence of CS gas clouds with enhanced metallicity around WW Vul. The existence of such a metal-rich gas component, however, needs to be confirmed by further observations and a more quantitative analysis.Comment: 21 pages, 13 figures. Accepted for publication by Astronomy & Astrophysic

    A first-principles approach to electrical transport in atomic-scale nanostructures

    Full text link
    We present a first-principles numerical implementation of Landauer formalism for electrical transport in nanostructures characterized down to the atomic level. The novelty and interest of our method lies essentially on two facts. First of all, it makes use of the versatile Gaussian98 code, which is widely used within the quantum chemistry community. Secondly, it incorporates the semi-infinite electrodes in a very generic and efficient way by means of Bethe lattices. We name this method the Gaussian Embedded Cluster Method (GECM). In order to make contact with other proposed implementations, we illustrate our technique by calculating the conductance in some well-studied systems such as metallic (Al and Au) nanocontacts and C-atom chains connected to metallic (Al and Au) electrodes. In the case of Al nanocontacts the conductance turns out to be quite dependent on the detailed atomic arrangement. On the contrary, the conductance in Au nanocontacts presents quite universal features. In the case of C chains, where the self-consistency guarantees the local charge transfer and the correct alignment of the molecular and electrode levels, we find that the conductance oscillates with the number of atoms in the chain regardless of the type of electrode. However, for short chains and Al electrodes the even-odd periodicity is reversed at equilibrium bond distances.Comment: 14 pages, two-column format, submitted to PR

    Aharonov-Bohm effect in the chiral Luttinger liquid

    Full text link
    Edge states of the quantum Hall fluid provide an almost unparalled opportunity to study mesoscopic effects in a highly correlated electron system. In this paper we develop a bosonization formalism for the finite-size edge state, as described by chiral Luttinger liquid theory, and use it to study the Aharonov-Bohm effect. The problem we address may be realized experimentally by measuring the tunneling current between two edge states through a third edge state formed around an antidot in the fractional quantum Hall effect regime. A renormalization group analysis reveals the existence of a two-parameter universal scaling function G(X,Y) that describes the Aharonov-Bohm resonances. We also show that the strong renormalization of the tunneling amplitudes that couple the antidot to the incident edge states, together with the nature of the Aharonov-Bohm interference process in a chiral system, prevent the occurrence of perfect resonances as the magnetic field is varied, even at zero temperature.Comment: 16 pages, Revtex, 5 figures available from [email protected]

    Flux-Induced Vortex in Mesoscopic Superconducting Loops

    Full text link
    We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect cylindrical symmetry, the order parameter has been known for long and no vortices are present in the linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively different from that of the vortices encountered in type II superconductivity. For samples with mirror symmetry, this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We propose direct and indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from cylindrical symmetr
    corecore