34 research outputs found

    O ensino de Zoologia evolutiva na educação básica : uma experiência desenvolvida nos primeiros anos do ensino fundamental

    Get PDF
    A Zoologia ensinada desde as séries iniciais distancia-se das atuais propostas para um ensino evolutivo. As visões utilitaristas e antropocêntricas sobre os animais são prevalentes e dificultam a formação de conceitos e a aprendizagem sobre Evolução em séries escolares posteriores. Com basesnesses pressupostos foi desenvolvida uma pesquisa de intervenção com 16 alunos de 3º ano do Ensino Fundamental, objetivando-se identificar, descrever e analisar os aspectos potenciais e limitantes de um processo educativo de Zoologia Evolutiva nas séries iniciais da escola básica, utilizando-se fundamentos teórico-práticos de Ausubel e Vigotski. As conclusões dessa experiência orientam-se para uma real e consistente possibilidade de aprendizagem significativa de Zoologia Evolutiva nas séries iniciais

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    O ensino de Zoologia evolutiva na educação básica : uma experiência desenvolvida nos primeiros anos do ensino fundamental

    No full text
    A Zoologia ensinada desde as séries iniciais distancia-se das atuais propostas para um ensino evolutivo. As visões utilitaristas e antropocêntricas sobre os animais são prevalentes e dificultam a formação de conceitos e a aprendizagem sobre Evolução em séries escolares posteriores. Com basesnesses pressupostos foi desenvolvida uma pesquisa de intervenção com 16 alunos de 3º ano do Ensino Fundamental, objetivando-se identificar, descrever e analisar os aspectos potenciais e limitantes de um processo educativo de Zoologia Evolutiva nas séries iniciais da escola básica, utilizando-se fundamentos teórico-práticos de Ausubel e Vigotski. As conclusões dessa experiência orientam-se para uma real e consistente possibilidade de aprendizagem significativa de Zoologia Evolutiva nas séries iniciais

    Efeito residual de biocarvão e pó de serra nos teores de carbono e nitrogênio total em Latossolo Amarelo na Amazônia.

    Get PDF
    O biocarvão (BC) atua como condicionador físico, químico e biológico, que somado a doses crescentes de pó de serra (PS) podem contribuir para a melhoria do solo. Objetivou-se com este trabalho verificar o efeito residual do biocarvão e do pó de serra nos teores de carbono total, carbono orgânico, nitrogênio total e a relação carbono e nitrogênio em um Latossolo Amarelo Distrófico na Amazônia Central. O experimento foi realizado na Estação Experimental do Instituto Nacional de Pesquisas da Amazônia, em Manaus-AM. O delineamento utilizado foi o de blocos casualizados (4 blocos), em ensaio fatorial, na primeira parcela (0, 40, 80, 120 t ha- 1) de BC, e na segunda foram aplicadas as doses de (0, 40, 80 e 120 t ha- 1) de PS, totalizando 16 tratamentos e 4 repetições com 64 unidades experimentais. Foram determinados os teores totais de carbono total (CT) e nitrogênio (NT) pelo método de combustão a seco, carbono orgânico (CO) pelo método walkley & black e relação Carbono e Nitrogênio total (C/N). Houve efeito significativo no nível de 1% de significância nos teores de CT nas duas profundidades (0-10 e 20-30 cm) medida em que as doses BC aumentaram, sendo que houve uma diferença de mais de 80 % entre a dose 0 (17,86 g kg-1) e 120 t (32.16 g kg-1). Houve interação significativa no nível de 5 % de probabilidade entre o BC e PS na profundidade 10-20 cm, sendo que a interação da dose 80 de BC e 40 PS apresentou a melhor media 34.67 g kg-1. Não houve efeito significativo para BC e PS nos teores de CO e matéria orgânica do solo (M.O) em nenhuma profundidade. O efeito residual do BC proporcionou um aumento significativo no nível de 5 % nos teores de nitrogênio total nas profundidades 0-10 e 10-20 cm. Houve um aumento crescente da relação C/N devido às doses de BC nas três profundidades do solo estudado.Made available in DSpace on 2017-11-23T23:19:20Z (GMT). No. of bitstreams: 1 2017045.pdf: 365165 bytes, checksum: 4b8336884e1f41958b8d8fe6de39014a (MD5) Previous issue date: 2017-11-23bitstream/item/167349/1/2017-045.pd
    corecore