213 research outputs found

    Влияние параметров одномассной системы с упругими ограничителями на характер ее колебаний

    Get PDF
    У статті розглянуто одномасну систему з пружними обмежувачами. Побудовано області існування різних режимів коливань системи, а також визначено вплив параметрів системи на межі цих областей.A one-mass system with elastic constraints is studied. Areas of existing of different oscillation modes are built. Also an influence of system parameters on limits of these areas is determined

    Pyruvate dehydrogenase E1α deficiency in a family : Different clinical presentation in two siblings

    Get PDF
    The pyruvate dehydrogenase (PDH) complex (PDHc) is responsible for the irreversible conversion of pyruvate to acetyl-CoA. PDHc is a multienzyme complex consisting of three catalytic subunits, pyruvate decarboxylase (E1), dihydrolipoamideacetyltransferase (E2), dihydrolipoamide dehydrogenase (E3), and two regulatorysubunits, E1 kinase and phospho-E1 phosphatase. An abnormal E1asubunit, whosegene is located on the X chromosome, is the most frequent cause of PDH deÐciency. The clinical presentation of a PDH-E1adeÐciency (McKusick 312170) is variable.We have analysed a family with a mutation (36 bp insertion in exon 10) in thePDH-E1agene in which the male member had a diferent and less severe clinicalpicture than his afected sister.Facultad de Ciencias Médica

    An Asymptomatic Case of Wolff-Parkinson-White Syndrome with Right-sided Free-wall Accessory Pathway and Left Ventricular Dysfunction

    Get PDF
    AbstractA 16-year-old girl with a known history of asymptomatic Wolff-Parkinson-White syndrome exhibited signs of left ventricular (LV) septal akinesia and LV dysfunction during routine follow-up. A 12-lead surface ECG showed pre-excitation, a predominantly negative delta wave in V1 and left axis deviation, which was consistent with the presence of a right free-wall accessory pathway. Radiofrequency ablation of the anterolateral right atrium around the local shortest atrium-to-ventricle interval created the accessory pathway block. An echocardiogram taken one month after the procedure revealed that LV septal wall motion had normalized and that LV ejection fraction had improved from 50% before the ablation to 64% after the ablation. Most previous reports of asymptomatic patients of WPW with LV septal dyskinesia and dysfunction have described right septal or posteroseptal accessory pathways. This patient reported here represents a rare case with right free-wall accessory pathway and LV dysfunction without tachycardia

    A multicenter study on Leigh syndrome: Disease course and predictors of survival

    Get PDF
    Background: Leigh syndrome is a progressive neurodegenerative disorder, associated with primary or secondary dysfunction of the mitochondrial oxidative phosphorylation. Despite the fact that Leigh syndrome is the most common phenotype of mitochondrial disorders in children, longitudinal natural history data is missing. This study was undertaken to assess the phenotypic and genotypic spectrum of patients with Leigh syndrome, characterise the clinical course and identify predictors of survival in a large cohort of patients. Methods. This is a retrospective study of patients with Leigh syndrome that have been followed at eight centers specialising in mitochondrial diseases in Europe; Gothenburg, Rotterdam, Helsinki, Copenhagen, Stockholm, Brussels, Bergen and Oulu. Results: A total of 130 patients were included (78 males; 52 females), of whom 77 patients had identified pathogenic mutations. The median age of disease onset was 7 months, w

    Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    Get PDF
    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required

    Efficacy and safety of Velmanase alfa in the treatment of patients with alpha-mannosidosis: results from the core and extension phase analysis of a phase III multicentre, double-blind, randomised, placebo-controlled trial

    Get PDF
    Introduction This phase III, double-blind, randomised, placebo-controlled trial (and extension phase) was designed to assess the efficacy and safety of velmanase alfa (VA) in alpha-mannosidosis (AM) patients. Methods Twenty-five patients were randomised to weekly 1 mg/kg VA or placebo for 52 weeks. At study conclusion, placebo patients switched to VA; 23 patients continued receiving VA in compassionate-use/follow-on studies and were evaluated in the extension phase [last observation (LO)]. Co-primary endpoints were changes in serum oligosaccharide (S-oligo) and in the 3-min stair-climb test (3MSCT). Results Mean relative change in S-oligo in the VA arm was −77.6% [95% confidence interval (CI) −81.6 to −72.8] at week 52 and −62.9% (95% CI −85.8 to −40.0) at LO; mean relative change in the placebo arm was −24.1% (95% CI −40.3 to −3.6) at week 52 and −55.7% (95% CI −76.4 to −34.9) at LO after switch to active treatment. Mean relative change in 3MSCT at week 52 was −1.1% (95% CI −9.0 to 7.6) and − % (95% CI −13.4 to 6.5) for VA and placebo, respectively. At LO, the mean relative change was 3.9% (95% CI −5.5 to 13.2) in the VA arm and 9.0% (95% CI −10.3 to 28.3) in placebo patients after switch to active treatment. Similar improvement pattern was observed in secondary parameters. A post hoc analysis investigated whether some factors at baseline could account for treatment outcome; none of those factors were predictive of the response to VA, besides age. Conclusions These findings support the utility of VA for the treatment of AM, with more evident benefit over time and when treatment is started in the paediatric age

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)

    Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders?A successful strategy for clinical research of rare diseases

    Get PDF
    BACKGROUND: To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS: Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS: Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS: The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (</= 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS: Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilizing differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies

    The 3-methylglutaconic acidurias: what’s new?

    Get PDF
    The heterogeneous group of 3-methylglutaconic aciduria (3-MGA-uria) syndromes includes several inborn errors of metabolism biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. Five distinct types have been recognized: 3-methylglutaconic aciduria type I is an inborn error of leucine catabolism; the additional four types all affect mitochondrial function through different pathomechanisms. We provide an overview of the expanding clinical spectrum of the 3-MGA-uria types and provide the newest insights into the underlying pathomechanisms. A diagnostic approach to the patient with 3-MGA-uria is presented, and we search for the connection between urinary 3-MGA excretion and mitochondrial dysfunction
    corecore