6 research outputs found

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    No full text
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2 Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2 Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes.</p

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    No full text
    The original version of the Supplementary Information associated with this Article included an incorrect Supplementary Data 1 file, in which additional delimiters were included in the first column for a number of rows, resulting in column shifts for some of these rows. The HTML has been updated to include a corrected version of Supplementary Data 1; the original incorrect version of Supplementary Data 1 can be found as Supplementary Information associated with this Correction. In addition, the original version of this Article contained an error in the author affiliations. An affiliation of Abdel Abdellaoui with Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article

    Author Correction: Heritability estimates for 361 blood metabolites across 40 genome-wide association studies (Nature Communications, (2020), 11, 1, (39), 10.1038/s41467-019-13770-6)

    No full text
    The original version of the Supplementary Information associated with this Article included an incorrect Supplementary Data 1 file, in which additional delimiters were included in the first column for a number of rows, resulting in column shifts for some of these rows. The HTML has been updated to include a corrected version of Supplementary Data 1; the original incorrect version of Supplementary Data 1 can be found as Supplementary Information associated with this Correction. In addition, the original version of this Article contained an error in the author affiliations. An affiliation of Abdel Abdellaoui with Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article

    Genome Analyses of &gt;200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders

    Get PDF
    C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p &lt;5 x 10(-8)). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.</p

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors

    No full text
    corecore