75 research outputs found

    Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa

    Get PDF
    In West Africa, the zonal band of precipitation is generally located around the southern coast in June before migrating northward towards the Sahel in late June/early July. This gives way to a relative dry season for coastal regions from Cîte d'Ivoire to Benin called “little dry season”, which lasts until September–October. Previous studies have noted that the coastal rainfall cessation in early July seems to coincide with the emergence of an upwelling along the Guinea coast. The aim of this study is to investigate the mechanisms by which this upwelling impacts precipitation, using a set of numerical simulations performed with the Weather Research and Forecasting regional atmospheric model (WRF v 3.7.1). Sensitivity experiments highlight the response of the atmospheric circulation to an intensification or reduction of the strength of the coastal upwelling. They clearly show that the coastal upwelling emergence is responsible for the cessation of coastal precipitation by weakening the northward humidity transport, thus decreasing the coastal convergence of the humidity transport and inhibiting the deep atmospheric convection. In addition, the diurnal cycle of the low-level circulation plays a critical role: the land breeze controls the seaward convergence of diurnal anomaly of humidity transport, explaining the late night–early morning peak observed in coastal precipitation. The emergence of the coastal upwelling strongly attenuates this peak because of a reduced land–sea temperature gradient in the night and a weaker land breeze. The impact on the inland transport of anthropogenic pollution is also shown with numerical simulations of aerosols using the CHIMERE chemistry-transport model: warmer (colder) sea surface temperature (SST) increases (decreases) the inland transport of pollutants, especially during the night, suggesting an influence of the upwelling intensity on the coastal low-level jet. The mechanisms described have important consequences for inland humidity transport and the predictability of the West African monsoon precipitation in summer.</p

    Advancing Decadal-Scale Climate Prediction in the North Atlantic Sector

    Get PDF
    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic1, and surface-temperature and rainfall variations over North America2, Europe3 and northern Africa4. Although these multidecadal variations are potentially predictable if the current state of the ocean is known5, 6, 7, the lack of subsurface ocean observations8 that constrain this state has been a limiting factor for realizing the full skill potential of such predictions9. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state10, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming

    A global outlook to the interruption of education due to COVID-19 Pandemic: Navigating in a time of uncertainty and crisis

    Get PDF
    Uncertain times require prompt reflexes to survive and this study is a collaborative reflex to better understand uncertainty and navigate through it. The Coronavirus (Covid-19) pandemic hit hard and interrupted many dimensions of our lives, particularly education. As a response to interruption of education due to the Covid-19 pandemic, this study is a collaborative reaction that narrates the overall view, reflections from the K12 and higher educational landscape, lessons learned and suggestions from a total of 31 countries across the world with a representation of 62.7% of the whole world population. In addition to the value of each case by country, the synthesis of this research suggests that the current practices can be defined as emergency remote education and this practice is different from planned practices such as distance education, online learning or other derivations. Above all, this study points out how social injustice, inequity and the digital divide have been exacerbated during the pandemic and need unique and targeted measures if they are to be addressed. While there are support communities and mechanisms, parents are overburdened between regular daily/professional duties and emerging educational roles, and all parties are experiencing trauma, psychological pressure and anxiety to various degrees, which necessitates a pedagogy of care, affection and empathy. In terms of educational processes, the interruption of education signifies the importance of openness in education and highlights issues that should be taken into consideration such as using alternative assessment and evaluation methods as well as concerns about surveillance, ethics, and data privacy resulting from nearly exclusive dependency on online solutions

    The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 33 (2009): 777-793, doi:10.1007/s00382-008-0523-2.An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland-Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.Support from NSF Grant 82677800 with the Woods Hole Oceanographic Institution, and (to CF) from the Institut universitaire de France and European FP6 project DYNAMITE (contract 003903-GOCE) and (to JD) from the NOAA Office of Hydrologic Development through a scientific appointment administered by UCAR is gratefully acknowledged

    Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction : a review

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund

    The Persistence of Winter Sea Surface Temperature in the North Atlantic

    No full text
    International audienc

    Diurnal cycle and seasonal evolution of the West African monsoon in thesouthern coastal region

    No full text
    International audienceThe representation of the diurnal cycle is an identified problem for the West African Monsoon forecasts, inparticular for the intraseasonal variability : models are known for their poor representation of clouds, whichhas a strong impact on solar radiation and surface energy balance, and therefore on the diurnal cycle in theatmospheric boundary layer. Since the latter is connected to the triggering of convection, this flaw leads to anunrealistic representation of humidity gradient between the Gulf of Guinea and the Sahel, moisture transportand precipitation. In this study, the Guinean Coastal Rainfall is analysed from the end of the oceanic phaseuntil the beginning of the Sahelian phase of the monsoon in 2008-2015, with reanalyses (ECMWF ERA5) andsatellite observations for clouds (MSG), precipitation (TRMM B42) and surface wind (ASCAT). The sea breeze/ land breeze alternation and its connection with the low-level wind divergence and surface temperature gradientwere found to strongly dominate the diurnal signal. Reanalyses and observations were then compared to betterunderstand the poor representation of precipitation in the mod
    • 

    corecore