1,455 research outputs found
An Infinite-Dimensional Family of Black-Hole Microstate Geometries
We construct the first explicit, smooth, horizonless black-hole microstate
geometry whose moduli space is described by an arbitrary function of one
variable and is thus infinite-dimensional. This is achieved by constructing the
scalar Green function on a simple D6 anti-D6 background, and using this Green
function to obtain the fully back-reacted solution for a supertube with varying
charge density in this background. We show that this supertube can store
parametrically more entropy than in flat space, confirming the entropy
enhancement mechanism that was predicted using brane probes. We also show that
all the local properties of the fully back-reacted solution can, in fact, be
obtained using the DBI action of an appropriate brane probe. In particular, the
supergravity and the DBI analysis yield identical functional bubble equations
that govern the relative locations of the centers. This indicates that there is
a non-renormalization theorem that protects these functional equations as one
moves in moduli space. Our construction creates configurations that are beyond
the scope of recent arguments that appear to put strong limits on the entropy
that can be found in smooth supergravity solutions.Comment: 46 pages, 1 figure, LaTe
Holographic renormalization as a canonical transformation
The gauge/string dualities have drawn attention to a class of variational
problems on a boundary at infinity, which are not well defined unless a certain
boundary term is added to the classical action. In the context of supergravity
in asymptotically AdS spaces these problems are systematically addressed by the
method of holographic renormalization. We argue that this class of a priori ill
defined variational problems extends far beyond the realm of holographic
dualities. As we show, exactly the same issues arise in gravity in non
asymptotically AdS spaces, in point particles with certain unbounded from below
potentials, and even fundamental strings in flat or AdS backgrounds. We show
that the variational problem in all such cases can be made well defined by the
following procedure, which is intrinsic to the system in question and does not
rely on the existence of a holographically dual theory: (i) The first step is
the construction of the space of the most general asymptotic solutions of the
classical equations of motion that inherits a well defined symplectic form from
that on phase space. The requirement of a well defined symplectic form is
essential and often leads to a necessary repackaging of the degrees of freedom.
(ii) Once the space of asymptotic solutions has been constructed in terms of
the correct degrees of freedom, then there exists a boundary term that is
obtained as a certain solution of the Hamilton-Jacobi equation which
simultaneously makes the variational problem well defined and preserves the
symplectic form. This procedure is identical to holographic renormalization in
the case of asymptotically AdS gravity, but it is applicable to any Hamiltonian
system.Comment: 37 pages; v2 minor corrections in section 2, 2 references and a
footnote on Palatini gravity added. Version to appear in JHE
Degenerate Stars and Gravitational Collapse in AdS/CFT
We construct composite CFT operators from a large number of fermionic primary
fields corresponding to states that are holographically dual to a zero
temperature Fermi gas in AdS space. We identify a large N regime in which the
fermions behave as free particles. In the hydrodynamic limit the Fermi gas
forms a degenerate star with a radius determined by the Fermi level, and a mass
and angular momentum that exactly matches the boundary calculations. Next we
consider an interacting regime, and calculate the effect of the gravitational
back-reaction on the radius and the mass of the star using the
Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine
the "Chandrasekhar limit" beyond which the degenerate star (presumably)
undergoes gravitational collapse towards a black hole. This is interpreted on
the boundary as a high density phase transition from a cold baryonic phase to a
hot deconfined phase.Comment: 75 page
Physical Activity Characteristics across GOLD Quadrants Depend on the Questionnaire Used
BACKGROUND:The GOLD multidimensional classification of COPD severity combines the exacerbation risk with the symptom experience, for which 3 different questionnaires are permitted. This study investigated differences in physical activity (PA) in the different GOLD quadrants and patient's distribution in relation to the questionnaire used. METHODS:136 COPD patients (58±21% FEV1 predicted, 34F/102M) completed COPD assessment test (CAT), clinical COPD questionnaire (CCQ) and modified Medical Research Council (mMRC) questionnaire. Exacerbation history, spirometry and 6MWD were collected. PA was objectively measured for 2 periods of 1 week, 6 months apart, in 5 European centres; to minimise seasonal and clinical variation the average of these two periods was used for analysis. RESULTS:GOLD quadrants C+D had reduced PA compared with A+B (3824 [2976] vs. 5508 [4671] steps.d-1, p<0.0001). The choice of questionnaire yielded different patient distributions (agreement mMRC-CAT κ = 0.57; CCQ-mMRC κ = 0.71; CCQ-CAT κ = 0.72) with different clinical characteristics. PA was notably lower in patients with an mMRC score ≥2 (3430 [2537] vs. 5443 [3776] steps.d-1, p <0.001) in both the low and high risk quadrants. CONCLUSIONS:Using different questionnaires changes the patient distribution and results in different clinical characteristics. Therefore, standardization of the questionnaire used for classification is critical to allow comparison of different studies using this as an entry criterion. CLINICAL TRIAL REGISTRATION:ClinicalTrials.gov NCT01388218
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
New instability of non-extremal black holes: spitting out supertubes
We search for stable bound states of non-extremal rotating three-charge black
holes in five dimensions (Cvetic-Youm black holes) and supertubes. We do this
by studying the potential of supertube probes in the non-extremal black hole
background and find that generically the marginally bound state of the
supersymmetric limit becomes metastable and disappears with non-extremality
(higher temperature). However near extremality there is a range of parameters
allowing for stable bound states, which have lower energy than the
supertube-black hole merger. Angular momentum is crucial for this effect. We
use this setup in the D1-D5 decoupling limit to map a thermodynamic instability
of the CFT (a new phase which is entropically dominant over the black hole
phase) to a tunneling instability of the black hole towards the supertube-black
hole bound state. This generalizes the results of ArXiv:1108.0411 [hep-th],
which mapped an entropy enigma in the bulk to the dual CFT in a supersymmetric
setup.Comment: 28 pages + appendix, 15 figures, v2: References added, typos
corrected. Version published in JHE
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota
The intestinal microbiota plays important roles in digestion and resistance
against entero-pathogens. As with other ecosystems, its species composition is
resilient against small disturbances but strong perturbations such as
antibiotics can affect the consortium dramatically. Antibiotic cessation does
not necessarily restore pre-treatment conditions and disturbed microbiota are
often susceptible to pathogen invasion. Here we propose a mathematical model to
explain how antibiotic-mediated switches in the microbiota composition can
result from simple social interactions between antibiotic-tolerant and
antibiotic-sensitive bacterial groups. We build a two-species (e.g. two
functional-groups) model and identify regions of domination by
antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of
multistability where domination by either group is possible. Using a new
framework that we derived from statistical physics, we calculate the duration
of each microbiota composition state. This is shown to depend on the balance
between random fluctuations in the bacterial densities and the strength of
microbial interactions. The singular value decomposition of recent metagenomic
data confirms our assumption of grouping microbes as antibiotic-tolerant or
antibiotic-sensitive in response to a single antibiotic. Our methodology can be
extended to multiple bacterial groups and thus it provides an ecological
formalism to help interpret the present surge in microbiome data.Comment: 20 pages, 5 figures accepted for publication in Plos Comp Bio.
Supplementary video and information availabl
- …
