5 research outputs found

    Abelhas visitantes florais de Solanum lycocarpum St. Hil. (Solanaceae) no Morro do Pai Inácio, Palmeiras, Bahia, Brasil

    Get PDF
    Studies on pollination ecology have been made with Solanum lycocarpum St. Hil. (Solanaceae) on Morro do Pai Inácio, a plateau located in the Chapada Diamantina, central part of the state of Bahia, Northeast of Brazil. The plant is a common Neotropical invader shrub called “lobeira” or “fruta-do-lobo” that occurs in the “Cerrado biome”. It is part of the diet of the wolf called “guará” (Chrysocyon brachyurus Illiger). Both the poricide anthers and the flower of S. lycocarpum are associated with the buzz pollination syndrome, which requires bees with a specific behavior for pollen removal. This behavior is also described on the present study. The main visitors of Solanum lycocarpum in the studied area were the halictid bees Augochloropsis sp. and Pseudaugochloropsis graminea (Halictidae). Pollen grains released by the vibration of the anthers were attached to the ventral part of the thorax and abdomen of the bees which subsequently had the behavior of cleaning their bodies and transferring the pollen to the scopa. Frequently, several flowers from the same plant were visited. Flowers presented more than 87% of the pollen grains viable.Estudos sobre Ecologia da Polinização foram realizados em Solanum lycocarpum St. Hil. (Solanaceae), na Chapada Diamantina, um planalto localizado na parte central do Estado da Bahia, Nordeste do Brasil. A planta é um arbusto invasor, neotropical, comum, conhecido como “lobeira ou fruta-do-lobo”, que ocorre no bioma Cerrado e faz parte da dieta alimentar do lobo-guará (Chrysocyon brachyurus Illiger). Anteras poricidas e as flores de Solanum lycocarpum são associadas à síndrome de polinização por vibração, a qual requer abelhas com comportamento especial para a coleta de pólen; esse comportamento foi também descrito no presente estudo. Os principais visitantes de Solanum lycocarpum na área estudada foram os Apoidea com as respectivas espécies Augochloropsis sp. e Pseudaugochloropsis graminea (Halictidae). O pólen liberado na vibração das anteras era aderido nas partes ventrais do tórax e do abdome das abelhas, que posteriormente realizavam o comportamento de limpeza do corpo e transferência do pólen para as escopas. Freqüentemente, diversas flores da mesma planta eram visitadas. As flores apresentaram acima de 87% de grãos de pólen viáveis

    Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera

    Get PDF
    Stingless bees (Meliponini) are a ubiquitous and diverse element of the pantropical melittofauna, and have significant cultural and economic importance. This review outlines their diversity, and provides identification keys based on external morphology, brief accounts for each of the recognized genera, and an updated checklist of all living and fossil species. In total there are currently 605 described extant species in 45 extant genera, and a further 18 extinct species in nine genera, seven of which are extinct. A new fossil genus, Adactylurina Engel, gen. nov., is also described for a species in Miocene amber from Ethiopia. In addition to the systematic review, the biology of stingless bees is summarized with an emphasis on aspects related to their nesting biology and architecture

    Data standardization of plant-pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.Fil: Salim, José A. Universidade de Sao Paulo; BrasilFil: Saraiva, Antonio M.. Universidade de Sao Paulo; BrasilFil: Zermoglio, Paula Florencia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; ArgentinaFil: Agostini, Kayna. Universidade Federal do São Carlos; BrasilFil: Wolowski, Marina. Universidade Federal de Alfenas; BrasilFil: Drucker, Debora P.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Soares, Filipi M.. Universidade de Sao Paulo; BrasilFil: Bergamo, Pedro J.. Jardim Botânico do Rio de Janeiro; BrasilFil: Varassin, Isabela G.. Universidade Federal do Paraná; BrasilFil: Freitas, Leandro. Jardim Botânico do Rio de Janeiro; BrasilFil: Maués, Márcia M.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Rech, Andre R.. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Veiga, Allan K.. Universidade de Sao Paulo; BrasilFil: Acosta, Andre L.. Instituto Tecnológico Vale; BrasilFil: Araujo, Andréa C. Universidade Federal do Mato Grosso do Sul; BrasilFil: Nogueira, Anselmo. Universidad Federal do Abc; BrasilFil: Blochtein, Betina. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Freitas, Breno M.. Universidade Estadual do Ceará; BrasilFil: Albertini, Bruno C.. Universidade de Sao Paulo; BrasilFil: Maia Silva, Camila. Universidade Federal Rural Do Semi Arido; BrasilFil: Nunes, Carlos E. P.. University of Stirling; BrasilFil: Pires, Carmen S. S.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Dos Santos, Charles F.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Queiroz, Elisa P.. Universidade de Sao Paulo; BrasilFil: Cartolano, Etienne A.. Universidade de Sao Paulo; BrasilFil: de Oliveira, Favízia F. Universidade Federal da Bahia; BrasilFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: da Silva, Gleycon V.. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Consolaro, Hélder. Universidade Federal de Catalão; Brasi

    Data standardization of plant–pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of termsinfo:eu-repo/semantics/publishedVersio

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    corecore