53 research outputs found

    Uncertainty quantification and sensitivity analysis of volcanic columns models: results from the integral model PLUME-MoM

    Get PDF
    The behavior of plumes associated with explosive volcanic eruptions is complex and dependent on eruptive source parameters (e.g. exit velocity, gas fraction, temperature and grain-size distribution). It is also well known that the atmospheric environment interacts with volcanic plumes produced by explosive eruptions in a number of ways. The wind field can bend the plume but also affect atmospheric air entrainment into the column, enhancing its buoyancy and in some cases, preventing column collapse. In recent years, several numerical simulation tools and observational systems have investigated the action of eruption parameters and wind field on volcanic column height and column trajectory, revealing an important influence of these variables on plume behavior. In this study, we assess these dependencies using the integral model PLUME-MoM, whereby the continuous polydispersity of pyroclastic particles is described using a quadrature-based moment method, an innovative approach in volcanology well-suited for the description of the multiphase nature of magmatic mixtures. Application of formalized uncertainty quantification and sensitivity analysis techniques enables statistical exploration of the model, providing information on the extent to which uncertainty in the input or model parameters propagates to model output uncertainty. In particular, in the framework of the IAVCEI Commission on tephra hazard modeling inter-comparison study, PLUME-MoM is used to investigate the parameters exerting a major control on plume height, applying it to a weak plume scenario based on 26 January 2011 Shinmoe-dake eruptive conditions and a strong plume scenario based on the climatic phase of the 15 June 1991 Pinatubo eruption

    Insights into the formation and dynamics of coignimbrite plumes from one-dimensional models

    Get PDF
    Coignimbrite plumes provide a common and effective mechanism by which large volumes of fine-grained ash are injected into the atmosphere. Nevertheless, controls on formation of these plumes as a function of eruptive conditions are still poorly constrained. Herein, two 1-D axysymmetric steady state models were coupled, the first describing the parent pyroclastic density current and the second describing plume rise. Global sensitivity analysis is applied to investigate controls on coignimbrite plume formation and describe coignimbrite source and the maximum plume height attained. For a range of initial mass flow rates between 108 and 1010 kg/s, modeled liftoff distance (the distance at which neutral buoyancy is attained), assuming radial supercritical flow, is controlled by the initial flow radius, gas mass fraction, flow thickness, and temperature. The predicted decrease in median grain size between flow initiation and plume liftoff is negligible. Calculated initial plume vertical velocities, assuming uniform liftoff velocity over the pyroclastic density current invasion area, are much greater (several tens of m/s) than those previously used in modeling coignimbrite plumes (1 m/s). Such velocities are inconsistent with the fine grain size of particles lofted into coignimbrite plumes, highlighting an unavailability of large clasts, possibly due to particle segregation within the flow, prior to plume formation. Source radius and initial vertical velocity have the largest effect on maximum plume height, closely followed by initial temperature. Modeled plume heights are between 25 and 47 km, comparable with Plinian eruption columns, highlighting the potential of such events for distributing fine-grained ash over significant areas

    Evolution of Conduit Geometry and Eruptive Parameters During Effusive Events

    Get PDF
    The dynamics of effusive events is controlled by the interplay between conduit geometry and source conditions. Dyke-like geometries have been traditionally assumed for describing conduits during effusive eruptions, but their depth-dependent and temporal modifications are largely unknown. We present a novel model which describes the evolution of conduit geometry during effusive eruptions by using a quasi steady state approach based on a 1-D conduit model and appropriate criteria for describing fluid shear stress and elastic deformation. This approach provides time-dependent trends for effusion rate, conduit geometry, exit velocity, and gas flow. Fluid shear stress leads to upward widening conduits, whereas elastic deformation becomes relevant only during final phases of effusive eruptions. Simulations can reproduce different trends of effusion rate, showing the effect of magma source conditions and country rock properties on the eruptive dynamics. This model can be potentially applied for data inversion in order to study specific case studies

    Effusion Rate Evolution During Small-Volume Basaltic Eruptions: Insights From Numerical Modeling

    Get PDF
    The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small-volume effusive eruptions, in the absence of syn-eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve

    MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    Get PDF
    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance

    Controls on explosive-effusive volcanic eruption styles

    Get PDF
    One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedbacks involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss, and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution
    corecore