13 research outputs found

    Can timber provision from Amazonian production forests be sustainable?

    Get PDF
    Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth's most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests' fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging

    Get PDF
    The use of photogrammetry technology for aboveground biomass (AGB) stock estimation in tropical savannas is a challenging task and is still at a preliminary stage. This work aimed to use metrics derived from point clouds, constructed using photogrammetric imaging obtained by an RGB camera on board a remotely piloted aircraft (RPA), to generate a model for estimating AGB stock for the shrubby-woody stratum in savanna areas of Central Brazil (Cerrado). AGB stock was estimated using forest inventory data and an allometric equation. The photogrammetric digital terrain model (DTM) was validated with altimetric field data, demonstrating that the passive sensor can identify topographic variations in sites with discontinuous canopies. The inventory estimated an average AGB of 18.3 (±13.3) Mg ha−1 at the three sampled sites. The AGB model selected was composed of metrics used for height at the 10th and 95th percentile, with an adjusted R2 of 93% and a relative root mean squared error (RMSE) of 16%. AGB distribution maps were generated from the spatialization of the metrics selected for the model, optimizing the visualization and our understanding of the spatial distribution of forest AGB. The study represents a step forward in mapping biomass and carbon stocks in tropical savannas using low-cost remote sensing platforms

    Critérios para a sustentabilidade do segundo ciclo em Floresta AmazÎnica

    No full text
    Remnant forest structure and increment by diameter class play a decisive role in the recovery volume for the next cutting cycle. Tree species in the Amazon Forest do not present a defined pattern of diameter structure, which is discussed here using Cedrela odorata L. as a case study The aim of this study was to identify, by simulation, recovery from logging in a real situation at three timber production sites, and the alternatives that are available to ensure commercial timber volume to a second cut cycle in the Brazilian Amazon. The study is concerned regarding the diametric classes of productive trees to the next cycle, the comparison demonstrates that one of the strategies recovers stock volume more quickly than expected in the cut cycle defined by Brazilian law. The number of trees remaining at the sites does not corroborate the common assumption that forest management depletes large diameter trees. This paper presents assessment strategies to evaluate and establish the diametric structure that would enable the possible recovery in the second cut cycle, depending on the volume logged during the first cut cycle.Estrutura da floresta remanescente e o incremento por classe de diĂąmetro desempenha papel decisivo na recuperação do volume para o prĂłximo ciclo de corte. EspĂ©cies de ĂĄrvores na Floresta AmazĂŽnica, nĂŁo apresentam um padrĂŁo definido de estrutura de diĂąmetro, discutido aqui utilizando Cedrela odorata L. como estudo de caso. Os objetivos deste trabalho foram identificar, por meio de simulação, a recuperação florestal apĂłs o manejo em uma situação real em trĂȘs locais de produção de madeira, e as alternativas disponĂ­veis para assegurar a recuperação do volume comercial de madeira em um segundo ciclo de corte na AmazĂŽnia brasileira. O trabalho se refere Ă s classes de diĂąmetro de ĂĄrvores produtivas para o prĂłximo ciclo. A comparação indica que uma das estratĂ©gias usadas permite recuperar o estoque de volume mais rĂĄpido do que o tempo definido no ciclo de corte estabelecido em lei. O nĂșmero de ĂĄrvores remanescentes nos locais nĂŁo corrobora a suposição comum de que o manejo florestal esgota ĂĄrvores de grandes diĂąmetros. Este artigo apresenta estratĂ©gias de levantamento para avaliar e estabelecer a estrutura diamĂ©trica mais indicada para recuperar no segundo ciclo o volume registrado durante o primeiro ciclo de corte

    MANAGEMENT OF <i>Amburana cearensis</i> var. <i>acreana</i> IN ACRE STATE, BRAZIL

    Get PDF
    http://dx.doi.org/10.5902/1980509814586This work has as its objectives: a) to assess the geographical distribution and population structure of Amburana cearensis var. acreana; b) to calculate sustainable cutting rates, according to stipulated cutting cycles, and c) to simulate the projected recovery potential in volume based on the calculated cutting rate. It was used data from sustainable forest management plans, and the results will contribute for future decisions about its endangered condition. The results did not corroborate the information that Amburana cearensis var. acreana is endangered in Acre state. However the management sustainability will only be feasible if considered the ideal remaining population structure and the estimative of the optimal cutting rate according to the cutting cycle. </p

    Aboveground Biomass Estimation in Amazonian Tropical Forests: a Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil

    No full text
    Tropical forests are often located in difficult-to-access areas, which make high-quality forest structure information difficult and expensive to obtain by traditional field-based approaches. LiDAR (acronym for Light Detection And Ranging) data have been used throughout the world to produce time-efficient and wall-to-wall structural parameter estimates for monitoring in native and commercial forests. In this study, we compare products and aboveground biomass (AGB) estimations from LiDAR data acquired using an aircraft-borne system in 2015 and data collected by the unmanned aerial vehicle (UAV)-based GatorEye Unmanned Flying Laboratory in 2017 for ten forest inventory plots located in the Chico Mendes Extractive Reserve in Acre state, southwestern Brazilian Amazon. The LiDAR products were similar and comparable among the two platforms and sensors. Principal differences between derived products resulted from the GatorEye system flying lower and slower and having increased returns per second than the aircraft, resulting in a much higher point density overall (11.3 ± 1.8 vs. 381.2 ± 58 pts/m2). Differences in ground point density, however, were much smaller among the systems, due to the larger pulse area and increased number of returns per pulse of the aircraft system, with the GatorEye showing an approximately 50% higher ground point density (0.27 ± 0.09 vs. 0.42 ± 0.09). The LiDAR models produced by both sensors presented similar results for digital elevation models and estimated AGB. Our results validate the ability for UAV-borne LiDAR sensors to accurately quantify AGB in dense high-leaf-area tropical forests in the Amazon. We also highlight new possibilities using the dense point clouds of UAV-borne systems for analyses of detailed crown structure and leaf area density distribution of the forest interior

    Optimal strategies for ecosystem services provision in Amazonian production forests

    Get PDF
    International audienceAlthough tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting highintensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and transboundary forest management
    corecore