58 research outputs found

    A mineralogical study of the Harmon lignite bed, Bullion Creek Formation (Paleocene), Bowman County, North Dakota

    Get PDF
    Study of the Harmon lignite bed at the Gascoyne Mine in Bowman County, North Dakota showed that most of the minerals in the coal lithobodies were detrital in origin and that variable ash deposition during combustion may be caused by variations in types and quantities of mineral phases. The Harmon bed is part of the Bullion Creek Formation (Paleocene). Objectives of this study included: to develop scanning electron microscope/microprobe techniques for the study of minerals in coal; to determine the origins of the mineral phases; to postulate a depositional environment for the Harmon lignite; and to ascertain whether variable ash deposition behavior of the Gascoyne lignite is related to mineral content. Scanning electron microscopy and electron microprobe analysis was used to identify and determine the abundance of minerals in the lignite. The average mineral content in weight percent was 44% quartz, 31% illite, 13% kaolinite, 5% montmorillonite, 5% pyrite, and 2% gypsum. The amount of mineral matter as discrete phases, not organically bound inorganic constituents, varied directly with total ash. The Blue Pit has a higher inorganic content than the White Pit because of a greater amount of quartz and clays in the B seam. This result demonstrates the lateral variability in inorganic content in the Gascoyne lignite. Minerals also varied in vertical distribution. Quartz and clay minerals were more abundant in lithologic layers that were adjacent to clay silt partings, overburden, and underclay. Quartz, illite, and kaolinite are primarily detrital in origin. Framboidal pyrite and possibly some kaolinite and phosphate minerals formed authigenically during early peat stages. Massive pyrite, gypsum, barite, celestite, siderite, and jarosite were probably epigenetic products which formed after seam compaction and coalification. The present mineral content of the Harmon lignite is probably the result of the characteristics of the depositional environment. Authigenic processes during early peat stages or after compaction and coalification had a minor influence on the current mineral content. The Harmon lignite was probably deposited as part of a lacustrine depositional environment. Periodic transgression and regression of the freshwater body would explain best the types of minerals observed and their distributions. Variations in ash deposition behavior within the Gascoyne Mine may be caused by the variation in types and quantities of discrete mineral phases

    Advanced SEM Techniques to Characterize Coal Minerals

    Get PDF
    Research at the University of North Dakota Energy and Environmental Research Center (EERC) has focused on methods to characterize the inorganic components in coals. Because the scanning electron microscope and electron probe microanalysis system (SEM/EPMA) provide both morphologic and chemical information, the SEM/EPMA system is well-suited to the characterization of discrete minerals in coal. Computer-controlled scanning electron microscopy (CCSEM), along with simultaneous automated digital image collection, is one means of gaining more detailed insight into coal mineralogy. Computer-stored images of coal surfaces already analyzed for minerals using CCSEM can be reanalyzed to discern mineral morphologies and coal-to-mineral associations. Limitations may exist when using just CCSEM to characterize chemically and physically complex clay minerals without complimentary data on the association of the minerals to the coal organic matrix. Mineralogic investigations of San Miguel and Beulah lignites and Upper Freeport bituminous coal using CCSEM and automated digital image collection are given with a particular reference to the clay minerals present. Total mineral quantities generated for the three coals were in good agreement with total ash content, provided that organically bound constituents were taken into account for the lignites. Classification of the more complex aluminosilicate minerals was aided by the use of distribution plots of Si/Al ratios and concentrations of ion exchangeable cations derived from the CCSEM analysis. Morphologic analysis of stored SEM images proved to be helpful in characterizing kaolinite group minerals

    EERC Center for Biomass Utilization 2006

    Get PDF
    The Center for Biomass Utilization (CBUü) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences

    The range and level of impurities in CO2 streams from different carbon capture sources

    Get PDF
    For CO2 capture and storage deployment, the impact of impurities in the gas or dense phase CO2 stream arising from fossil fuel power plants, or large scale industrial emitters, is of fundamental importance to the safe and economic transportation and storage of the captured CO2. This paper reviews the range and level of impurities expected from the main capture technologies used with fossil-fuelled power plants in addition to other CO2 emission-intensive industries. Analysis is presented with respect to the range of impurities present in CO2 streams captured using pre-combustion, post-combustion and oxy-fuel technologies, in addition to an assessment of the different parameters affecting the CO2 mixture composition. This includes modes of operation of the power plant, and different technologies for the reduction and removal of problematic components such as water and acid gases (SOx/NOx). A literature review of data demonstrates that the purity of CO2 product gases from carbon capture sources is highly dependent upon the type of technology used. This paper also addresses the CO2 purification technologies available for the removal of CO2 impurities from raw oxy-fuel flue gas, such as Hg and non-condensable compounds. CO2 purities of over 99% are achievable using post-combustion capture technologies with low levels of the main impurities of N2, Ar and O2. However, CO2 capture from oxy-fuel combustion and integrated gasification combined cycle power plants will need to take into consideration the removal of non-condensables, acid gas species, and other contaminants. The actual level of CO2 purity required will be dictated by a combination of transport and storage requirements, and process economics

    Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review

    Get PDF
    In oxy‐fuel combustion, fuel is burned using oxygen together with recycled flue gas, which is needed to control the combustion temperature. This leads to higher concentrations of sulfur dioxide and sulfur trioxide in the recycled gas, which can result in the formation of sulfuric acid and enhanced corrosion. Current experimental data on SO3 formation, reaction mechanisms, and mathematical modelling have indicated significant differences in SO3 formation between air‐ and oxy‐fuel combustion for both the wet and dry flue gas recycle options. This paper provides an extensive review of sulfur trioxide formation in air‐ and oxy‐fuel combustion environments, with an emphasis on coal‐fired systems. The first part summarizes recent findings on oxy‐fuel combustion experiments, as they affect sulfur trioxide formation. In the second part, the review focuses on sulfur trioxide formation mechanisms, and the influence of catalysis on sulfur trioxide formation. Finally, the current methods for measuring sulfur trioxide concentration are also reviewed along with the major difficulties associated with those measurements using data available from both bench‐ and pilot‐scale units
    • 

    corecore