107 research outputs found

    Role and recruitment of the TagL peptidoglycan-binding protein during Type VI secretion system biogenesis

    Get PDF
    International audienceThe type VI secretion system (T6SS) is an injection apparatus that uses a springlike mechanism for effector delivery. The contractile tail is composed of a needle tipped by a sharpened spike and wrapped by the sheath that polymerizes in an extended conformation on the assembly platform, or baseplate. Contraction of the sheath propels the needle and effectors associated with it into target cells. The passage of the needle through the cell envelope of the attacker is ensured by a dedicated trans-envelope channel complex. This membrane complex (MC) comprises the TssJ lipoprotein and the TssL and TssM inner membrane proteins. MC assembly is a hierarchized mechanism in which the different subunits are recruited in a specific order: TssJ, TssM, and then TssL. Once assembled, the MC serves as a docking station for the baseplate. In enteroaggregative Escherichia coli, the MC is accessorized by TagL, a peptidoglycan-binding (PGB) inner membrane-anchored protein. Here, we show that the PGB domain is the only functional domain of TagL and that the N-terminal transmembrane region mediates contact with the TssL transmembrane helix. Finally, we conduct fluorescence microscopy experiments to position TagL in the T6SS biogenesis pathway, demonstrating that TagL is recruited to the membrane complex downstream of TssL and is not required for baseplate docking

    TssA from Aeromonas hydrophila: expression, purification and crystallographic studies

    Get PDF
    TssA is a core subunit of the type VI secretion system, which is a major player in interspecies competition in Gram-negative bacteria. Previous studies on enteroaggregative Escherichia coli TssA suggested that it is comprised of three putative domains: a conserved N-terminal domain, a middle domain and a ring-forming C-terminal domain. X-ray studies of the latter two domains have identified their respective structures. Here, the results of the expression and purification of full-length and domain constructs of TssA from Aeromonas hydrophila are reported, resulting in diffraction-quality crystals for the middle domain (Nt2) and a construct including the middle and C-terminal domains (Nt2-CTD)

    Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex

    Get PDF
    Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system

    Visualization of the <i>Serratia </i>type VI secretion system reveals unprovoked attacks and dynamic assembly

    Get PDF
    SummaryThe Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches

    Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    Get PDF
    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle

    Chapter 23 Defining assembly pathways by fluorescence microscopy

    Get PDF
    International audienceBacterial secretion systems are amongst the largest protein complexes in prokaryotes, and display remarkably complex architectures. Their assembly often follows clearly defined pathways. Deciphering these pathways not only reveals how bacteria accomplish to build these large functional complexes, but can provide crucial information on the interactions and subcomplexes within secretion systems, their distribution within the bacterium, and even functional insights. The emergence of fluorescent proteins has provided a new powerful tool for biological imaging, and the use of fluorescently labeled components presents an interesting method to accurately define the biogenesis of macromolecular complexes. Here, we describe the use of this method to decipher the assembly pathway of bacterial secretion systems

    Biogenesis and membrane anchoring of the Type VI secretion contractile tail

    No full text
    Récemment, le système de sécrétion de type VI (SST6) a été identifié comme un nouvel acteur clé dans la compétition inter-bactérienne parmi le large arsenal dont dispose les bactéries. L’une des particularités du SST6 est de cibler à la fois des cellules eucaryotes et procaryotes. Le T6SS est un complexe protéique formé par l’assemblage de deux ‘sous-complexes’. Le premier sert à l’ancrage de la machinerie au sein de l’enveloppe bactérienne et le second agit comme une arbalète moléculaire. Le mécanisme d’action du SST6 est très similaire à celui d’autres machineries contractiles telles que celui des bactériophages : la contraction d’un fourreau propulse une flèche, composée d’un tube avec une aiguille à son extrémité, directement dans la cellule cible afin de délivrer les différentes toxines. Mon projet de thèse consiste à comprendre quelles sont la structure et la biogénèse des deux différents complexes et de comprendre comment ils sont assemblés. Nous utilisons comme modèle la bactérie pathogène à Gram négatif Escherichia coli entéroagrégative. J’ai pu démontrer que le complexe membranaire est assemblé en premier, avec l’adressage de la lipoprotéine de membrane externe TssJ, puis le recrutement séquentiel de TssM et TssL, deux protéines de membrane interne. Le complexe membranaire recrute ensuite une plateforme d’assemblage, appelée ‘baseplate’. Nous avons identifié et caractérisé les composants de cette ‘baseplate’ qui sert de plateforme d’assemblage pour le recrutement du reste de la machinerie (fourreau et flèche). Enfin, nous avons identifié et déterminé le rôle de la protéine TssA, une protéine qui coordonne la polymérisation du fourreau et de la flèche.Among the broad weaponry of bacteria, the recently identified type VI secretion system (T6SS) emerges as one of the key player in bacterial competition. T6SS is a versatile machinery that targets both eukaryotic and prokaryotic cells. This molecular weapon assembles two evolutionarily different sub-assemblies. One complex anchors the machinery to the cell envelope while the second acts as a molecular crossbow. The mechanism of action of the T6SS is similar to other known contractile machineries such as bacteriophages: the contraction of a sheath propels an arrow, constituted of a tail tube capped by a cell-puncturing device, directly into the prey cell to deliver effector toxins. My Ph.D project was to provide mechanistic details on the structure and biogenesis of the two T6SS sub-complexes and to understand how they are connected, using entero-aggregative Escherichia coli as model bacterium. I have demonstrated that the membrane complex is assembled first and starts with the positioning of the outer membrane TssJ lipoprotein and proceeds inward, from the outer to the inner membrane, through the sequential recruitment of the TssM and TssL subunits. After assembly, the membrane complex recruits an assembly platform called the baseplate. We identified and characterized the components of this baseplate, which serves as assembly platform for the tail. We further demonstrated that the functional and physical interaction between the T6SS membrane complex and the baseplate is mediated by multiple contacts. Finally, we identified and deciphered the role of TssA, a protein that coordinates the polymerizations of the tail tube and sheath
    • …
    corecore