21 research outputs found

    Replication and fine mapping of asthma-associated loci in individuals of African ancestry

    Get PDF
    Asthma originates from genetic and environmental factors with about half the risk of disease attributable to heritable causes. Genome-wide association studies, mostly in populations of European ancestry, have identified numerous asthma-associated single nucleotide polymorphisms (SNPs). Studies in populations with diverse ancestries allow both for identification of robust associations that replicate across ethnic groups and for improved resolution of associated loci due to different patterns of linkage disequilibrium between ethnic groups. Here we report on an analysis of 745 African-American subjects with asthma and 3,238 African-American control subjects from the Candidate Gene Association Resource (CARe) Consortium, including analysis of SNPs imputed using 1,000 Genomes reference panels and adjustment for local ancestry. We show strong evidence that variation near RAD50/IL13, implicated in studies of European ancestry individuals, replicates in individuals largely of African ancestry. Fine mapping in African ancestry populations also refined the variants of interest for this association. We also provide strong or nominal evidence of replication at loci near ORMDL3/GSDMB, IL1RLML18R1, and 10pl4, all previously associated with asthma in European or Japanese populations, but not at the PYHIN1 locus previously reported in studies of African-American samples. These results improve the understanding of asthma genetics and further demonstrate the utility of genetic studies in populations other than those of largely European ancestry

    Public Health 101 Nanocourse: A Condensed Educational Tool for Non–Public Health Professionals

    No full text
    Graduate students and postdoctoral fellows—including those at the Harvard School of Public Health (HSPH)—have somewhat limited opportunities outside of traditional coursework to learn holistically about public health. Because this lack of familiarity could be a barrier to fruitful collaboration across disciplines, HSPH postdocs sought to address this challenge. In response, the Public Health 101 Nanocourse was developed to provide an overview of five core areas of public health (biostatistics, environmental health sciences, epidemiology, health policy and management, and social and behavioral sciences) in a two half-day course format. We present our experiences with developing and launching this novel approach to acquainting wider multidisciplinary audiences with the field of public health

    Rapid assessment of genetic ancestry in populations of unknown origin by genome-wide genotyping of pooled samples.

    Get PDF
    As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB)

    The efficacy of detecting variants with small effects on the Affymetrix 6.0 platform using pooled DNA

    No full text
    Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for evaluating the utility of other or future genome-wide genotyping platforms in pooled DNA studies
    corecore