1,013 research outputs found

    School Reopenings, Mobility, and COVID-19 Spread: Evidence from Texas

    Get PDF
    This paper examines the effect of fall 2020 school reopenings in Texas on county-level COVID19 cases and fatalities. Previous evidence suggests that schools can be reopened safely if community spread is low and public health guidelines are followed. However, in Texas, reopenings often occurred alongside high community spread and at near capacity, likely making it difficult to meet social distancing recommendations. Using event-study models and hand-collected instruction modality and start dates for all school districts, we find robust evidence that reopening Texas schools gradually but substantially accelerated the community spread of COVID-19. Results from our preferred specification imply that school reopenings led to at least 43,000 additional COVID-19 cases and 800 additional fatalities within the first two months. We then use SafeGraph mobility data to provide evidence that spillovers to adults’ behaviors contributed to these large effects. Median time spent outside the home on a typical weekday increased substantially in neighborhoods with large numbers of school-age children, suggesting a return to in-person work or increased outside-of-home leisure activities among parents

    Public Concern About Monitoring Twitter Users and Their Conversations to Recruit for Clinical Trials: Survey Study

    Get PDF
    Background: Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective: This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods: We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results: While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (PP=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (PP=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions: The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines

    Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR

    Full text link
    Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we detect a gap in its electronic excitations, similar to that observed in tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and strong electronic correlations must be considered to understand the behaviour of even electron systems, regardless of the structure. Furthermore, in metallic Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR, implying the occurence of excitations typical of JT distorted C60^{2-} (or equivalently C60^{4-}). This supports the idea that dynamic JTD can induce attractive electronic interactions in odd electron systems.Comment: 3 figure

    A symplectic proof of a theorem of Franks

    Full text link
    A celebrated theorem in two-dimensional dynamics due to John Franks asserts that every area preserving homeomorphism of the sphere has either two or infinitely many periodic points. In this work we reprove Franks' theorem under the additional assumption that the map is smooth. Our proof uses only tools from symplectic topology and thus differs significantly from all previous proofs. A crucial role is played by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian diffeomorpisms.Comment: 15 pages. Minor changes. Final version to appear in Compositio Mathematic

    Basalt-trachybasalt samples in Gale Crater, Mars

    Get PDF
    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg#=27 but with a secondary concentration of basaltic material,with a focus of compositions around Mg#=54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces

    Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach

    Get PDF
    S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions
    • …
    corecore