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ABBREVIATION USED 

AKI acute kidney injury 

ATN acute tubular necrosis 

KIRI kidney ischemia-reperfusion inury 

sCr serum creatinine 

BUN blood urea nitrogen 

CEST chemical exchange saturation transfer 

ROI  Region ff interest 

H&E hematoxylin and eosin 
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Abstract 

Acute kidney injury (AKI) in mice caused by sustained ischemia followed by reperfusion is associated with 

acute tubular necrosis and renal dysfunctional blood flow. Despite the principal role of the kidney is the 

maintenance of acid-base balance, current imaging approaches are unable to assess this important parameter 

and clinical biomarkers are not robust enough in evaluating the severity of kidney damage. Therefore, novel 

noninvasive imaging approaches are needed to assess in vivo the acid-base homeostasis. This study 

investigates the usefulness of magnetic resonance imaging (MRI) - chemical exchange saturation transfer 

(CEST) pH imaging in characterizing moderate and severe AKI in mice following unilateral ischemia-

reperfusion injury. Moderate ischemia (20 min) and severe ischemia (40 min) were induced in Balb/C mice 

that were imaged at 4 time points thereafter (days 0, 1, 2, 7). A significant increase of renal pH values was 

observed as early as one day after the ischemia-reperfusion damage for both moderate and severe ischemia. 

MRI-CEST pH imaging distinguished the evolution of moderate from severe AKI. A recovery of normal 

renal pH values was observed for moderate AKI, whereas a persisting renal pH increase was observed for 

severe AKI at day 7. Renal filtration fraction was significantly lower for clamped kidneys following 

impairment of glomerular filtration. Notably, renal pH values were significantly correlated with the 

histopathological score. In conclusion, MRI-CEST pH mapping is a valid tool for the noninvasive evaluation 

of both acid-base balance and renal filtration in patients with ischemia-reperfusion injury. 
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INTRODUCTION 

Ischemic renal injury is a severe clinical problem in nephrology and the major cause of acute kidney injury 

(AKI).1  Hospitalized patients commonly experience AKI that is strongly associated with poor prognosis and 

high mortality.2 Moreover, patients may develop a progressive renal dysfunction even with initial recovery of 

renal function.3 Despite advances in clinical care and therapeutic interventions, morbidity and mortality 

remain high, largely due to the incomplete understanding of AKI pathophysiology and to the limitation of 

currently techniques for diagnosis. In fact, conventional biomarkers such as blood urea nitrogen (BUN) and 

serum creatinine (sCr) are unable to fulfil diagnostic criteria.4 BUN production is inconstant and can be 

altered by non renal factors, whereas sCr values become pathological if more than half of the glomerular 

filtration rate is lost. In addition, increases in blood concentrations become detectable only 24 hours after the 

occurrence of the pathological event.5 Therefore, the noninvasive evaluation and monitoring of renal 

function may allow a timely and definitive diagnosis of AKI. 

Functional magnetic resonance imaging (MRI) provides several approaches, such as diffusion-weighted 

imaging,6 blood oxygen level dependent imaging,7 arterial spin labelling,8 longitudinal and transverse 

relaxation time measurements,9, 10 dynamic contrast enhanced imaging,11 hyperpolarized magnetic 

resonances spectroscopy,12 and sodium MRI,13 to assess renal function and pathophysiology beside 

anatomical information. All these MRI-based methods may be useful to determine renal pathology by 

quantification of renal water diffusion, oxygenation, perfusion, tissue water content and viability.14-16 

In the context of the different physiological parameters that one may image in vivo, renal pH appears of 

outmost relevance, since the kidneys hold the key role of regulating the acid-base balance. In fact, survival of 

animals is heavily dependent on the acid-base homeostasis, since changes in pH could have marked 

outcomes on biological processes at several levels (cellular, tissue and whole animal). As a consequence, the 

rapid decline in kidney function following AKI will result in derangements in acid-base homeostasis.17 Thus, 

imaging techniques able to report in vivo accurate pH measurements and longitudinal pH alterations would 

have a great clinical relevance not only for early identification of AKI but also for providing reliable 

predictions for further outcomes. 
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In recent years, the development of responsive MRI contrast agents that report on tissue pH have attracted 

considerable attention, owing to the altered production of acids that occur in several pathologies.18 Chemical 

exchange saturation transfer (CEST) is a novel MRI approach in which the contrast is generated by 

saturating specific exchangeable protons on either endogenous or exogenous molecules.19, 20 Owing to the 

sensitivity of the proton exchange rate to a variety of chemical and physical factors, including pH, several 

CEST pH-responsive probes have been demonstrated to measure tissue pH.21-28 Among them, iopamidol is a 

clinical approved radiographic agent that was demonstrated to report accurate renal pH values, independently 

from the concentration, both at preclinical and clinical levels.21, 29  Notably, altered renal pH values have 

been observed in a glycerol-induced murine model of ATN involving both kidneys by exploiting MRI-CEST 

pH mapping with iopamidol.30 

Considering that ischemia is the main aetiology in human AKI, and that pH may represent a good biomarker 

for its detection, it was deemed of interest whether MRI-CEST renal pH mapping can detect early renal 

damage and distinguish AKI recovery from irreversible damage in a unilateral kidney ischemia reperfusion 

injury (KIRI) model. The unilateral ischemia reperfusion injury model was used because of the advantage 

that only one kidney is damaged, whereas the contralateral kidney is not affected. Consequently, in this 

model of post-ischemic AKI, serum biomarkers are minimally affected, since the contralateral kidney can 

compensate for the reduced renal functionality. Moreover, as the entity of the damage is dependent on the 

time of ischemia, this model appears suitable to fairly reproducing different human conditions of post-

ischemic damage evolution, since some patients may spontaneously recuperate normal renal functionality 

after few days, whereas for others the initial insult did not resolve and progressively evolves to the end-stage 

kidney disease.31 The aim of this study was to assess if MRI-CEST pH mapping can detect the early onset of 

acute kidney damage and distinguish between the recovery and persistence of the damage following 

unilateral ischemia reperfusion injury in mice. 

 

METHODS 

Animal model 
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BALB/c mice were purchased from Charles River Laboratories (Calco, Italy) and maintained in specific 

pathogen-free conditions. All animal experiments were approved by the University Ethical Committee and 

performed in accordance with the European guidelines under directive 2010/63. The model of normothermic 

unilateral renal ischemia reperfusion injury was performed as follows. Briefly, after anaesthesia with a 

mixture of tiletamine/zolazepam 20 mg/kg (Zoletil 100; Virbac, Milan, Italy) and 5 mg/kg xylazine 

(Rompun; Bayer, Milan, Italy) injected intramuscular, mice were submited to a midline laparatomy to expose 

the left renale pedicle, then it was occluded with a vascular clamp for 20 min (n=14 mice) or 40 min (n=15 

mice). For longitudinal MRI-examinations, n=6 animal with moderate AKI and n=7 animals with severe 

AKI were used. Some on the animals were killed on day1 (n=4 with 20 and 40 min KIRI) and on day 7 (n=4 

with 20 and 40 min KIRI) for histology work up. Sham operation was performed on the right vascular 

pedicle for comparison (n=6 mice). Interventions were performed under a thermic lamp to maintain constant 

the mice body temperature. At the end of the ischemic injury mice were allowed to recovery and 

supplemented with 1 ml of sterile 0.9% NaCl solution administered subcutaneously. Animals were examined 

by MRI before and 1, 2 and 7 days after renal re-flow. 

 

In vivo magnetic resonance imaging studies 

Chemical exchange saturation transfer pH imaging 

MRI images were acquired with a 7T MRI micro-imaging vertical scanner (Avance 300, Bruker Biospin, 

Germany). A 30 mm birdcage resonator was used for both transmission and receiving. During imaging, each 

mouse was anesthetized by injecting a mixture of tiletamine/zolazepam 20 mg/kg (Zoletil 100; Virbac, 

Milan, Italy) and 5 mg/kg xylazine (Rompun; Bayer, Milan, Italy). Respiratory rate was continuously 

monitored using a respiratory air pillow (SA Instruments, Stony Brook, NY; USA). 

Kidneys were localized with axial and coronal T2-weighted images covering the whole kidneys. A high 

spatial resolution T2-weighted image (field of view of 3x3 cm, matrix of 256x256, slice thickness of 1.5mm, 

in-plane resolution of 117 µm) was acquired for placing the region of interests (ROI) for correct delineation 

of the whole kidney. A single-shot RARE sequence (TR = 6s, TE = 4.1ms, Rare Factor = 96, centric 
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encoding = 1) preceded by a 3µT cw presaturation pulse for 5 s and by a fat-suppression module was used to 

acquire Z-spectra. The CEST spectrum was acquired in the frequency offset range ±10 ppm with 37 offsets 

unevenly separated. An acquisition matrix of 96x96 was reconstructed to 128x128 with a field of view of 

3x3 cm (in-plane spatial resolution = 234 µm) and a slice thickness of 1.5 mm. The acquisition time for a 

single MR-CEST spectrum was ca. 4 min. MR-CEST images were acquired before and after i.v. injection of 

iopamidol (dose = 1.0 g iodine / kg body weight).  

 

CEST analysis 

All CEST images were analyzed using a Matlab-based home-made script (The Mathworks, Inc., Natick, MA, 

USA). The Z-spectra were interpolated by cubic splines, B0-shift corrected and saturation transfer efficiency 

(ST%) was measured by punctual analysis . A threshold value of 2% was set, based on the ΔST variations 

between multiple pre-contrast ST maps (ca. 1.2% at 4.3 - 4.4 ppm) to discriminate between enhancing and 

not-enhancing pixels. pH values were estimated in vivo by applying the ratiometric approach on manually-

defined region of interests.21 The renal pH parametric maps were superimposed onto the anatomical 

reference image. Filtration fraction was calculated as the percent of detected pixels within the kidney region. 

 

Histology and Renal Function 

Following the completion of MRI experiments, mice were euthanized and kidneys were removed 

immediately for histological analysis. Sagittal sections of both kidneys were overnight fixed in 4% buffered 

formaldehyde solution. One experienced pathologist (JCC with more than 20 years of experience) evaluated 

the extent of renal damage as it was previously reported.32 Histological examination were performed on de-

waxed 5 µm PAS stained sections to evaluate the following parameters of tubular cell injury: loss of brush 

border (partial or complete loss of the brush border), vacuolar degeneration (presence of more than three 

cells with cytoplasmic vacuoles or blebs formation protruding into the lumen of the tubules), tubular 

dilatation (dilatation was considered when the tubular lumen was increased at least 20% versus normal co-

respective), cell detachment (presence of necrotic or morphological well preserved isolated cells in the 
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tubular lumen), necrosis (presence of three or more cells with signs of coagulative necrosis, such as loss of 

cell boundaries with marked eosinophilia or extreme swelling together with nuclear changes consisting in 

pyknosis or chromatolysis or karyorrhexis), and formation of casts (presence of granule-hyaline, mucous or 

proteinaceous material in the tubular lumen). Five non consecutive fields from the cortex and the outer 

medulla were evaluated (magnification 200x). Renal injury scores were determined by the percentage of 

tubules involved: 0 = 0; 1 = up to 10%; 2 = 11–20%; 3 = 21–40%; 4 = 41–60%; 5 = more than 61%.  Overall 

histological score was obtained by summing all the individual parameters of injury.  

Blood was collected to measure serum creatinine (sCr) and blood urea nitrogen (BUN) levels in SHAM and 

KIRI groups at different time points. In addition, urinary pH values were measured by collecting urine just 

after the MRI experiments. 

 

Statistical analysis 

Renal pH values were measured before and after ischemic reperfusion injury for both kidneys in each group. 

All values were expressed as mean ±SD unless otherwise stated. Analysis of variance (ANOVA) and 

Bonferroni’s multiple comparison test was employed to compare the differences between groups. The 

Pearson product moment correlation test was used to search for correlation between parameters. A value of P 

< 0.05 was considered statistically significant. The statistical analysis was performed by using the GraphPad 

Prism 5 program package (GraphPad Inc, San Diego, California, USA). 

 

RESULTS 

Histological findings confirm reversible and irreversible renal damage 

Histological evaluation confirmed extensive injury in the clamped kidneys as soon as 1 day after the induced 

ischemia, whereas in the contralateral ones a negligible damage was observed (Figure 1A). Anyway, 

different morphological pattern of damage was observed after 20 and 40 min of ischemia. At one day of re-

flow upon 40 min of ischemia, kidneys showed severe morphological alterations in comparison with the 
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kidneys undergone to 20 min of ischemia (Figure 1B). Most of the proximal convoluted tubules throughout 

the major part of the outer medulla, exhibited a higher score of ATN consisting in loss of brush borders, 

tubular dilatation, cast deposition, cell detachment and tubular necrosis, in contrast to kidneys submitted to 

20 min of ischemia (Figure S1). Even seven days after I/R injury, still high scores of tubular damage was 

observed for the 40 min clamped kidneys, whereas the 20 min ischemic injured kidneys showed practically a 

full recovery of the normal morphology. In view of these results, we like to propose herein this model of 

AKI as a well-defined condition of renal reversible and irreversible injury that can be followed by non-

invasive imaging approaches to assess single kidney loss of morphology and functionality. 

 

Serum biomarkers are not able to detect acute renal damage 

There were no major differences between sCr levels before and after 20 min of ischemia/reperfusion injury 

in all animals (Figure 2A). There were no significant differences also for the BUN levels for the 20 min KIRI 

group (Figure 2B). This may be attributable to the well-functioning contralateral kidney and to the reduced 

damage in the clamped one, that overall indicates an unsuitability of serum biomarkers to assess the natural 

progression of mild renal damage upon ischemia/reperfusion injury. The 40 min KIRI group showed a 

moderate increase in both sCr and BUN levels at both one and seven days following reperfusion injury, with 

statistically significance only after 7 days for the BUN levels (31.4 ±3.0 vs 19.9 ±2.2, P<0.01, for KIRI and 

SHAM groups, respectively).  

Urine pH values between animals with moderate AKI and SHAM were not significantly different at both day 

1 and day 7 (Figure 2C). In the acute phase, at day 1 after severe AKI injury, urine pH values were higher 

than the sham group (pH=5.8 ±0.3 vs 5.0 ±0.5). In contrast to the moderate AKI group, at day 7 after surgery 

urine pH values in the severe AKI group were still increased. These results confirm the inability of current 

biomarkers to assess the early onset of single kidney damage. 

 

CEST pH detects KIRI acute damage and recovery upon 20 min ischemia injury 
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After moderate AKI, MRI-CEST pH mapping detected elevation of renal pH values in the clamped kidney 

indicating renal damage that was most pronounced at 1 day and 2 days post ischemia (Figure 3A). pH values 

were significantly higher at day 1 (pH=7.0 ±0.2, P<0.01) and at day 2 (pH=6.9 ±0.2, P<0.01) compared to 

baseline (pH=6.7 ±0.2) for clamped kidneys. A significant increase of the pH values was observed in 

comparison to contralateral control kidneys without AKI at day 1 (6.7 ±0.2 vs 7.0 ±0.2, P<0.05). No 

significant changes of pH values were observed in the contralateral kidney without AKI compared with 

baseline. Examples of T2w anatomical images and corresponding pH maps at different time points after the 

moderate AKI are given in Figure 4A and 4B.  

 

CEST pH detects KIRI acute and persistent damage upon 40 min ischemia injury 

The pH values were increased after the severe AKI onset at day 1, with more conspicuous variations at day 2 

(Figure 3B). At day 1, the pH values increased to 7.0 ±0.1 in comparison to baseline values (6.7 ±0.2, 

P<0.01) and peaked at day 2 (pH=7.0 ±0.1, P<0.01). In contrast to moderate AKI, the pH values remained 

significantly elevated until day 7 (pH=6.9 ±0.2, P<0.01). A significant difference between the moderate and 

severe AKI was observed at this time point (P<0.01). In the contralateral kidney without AKI, pH values 

were unchanged throughout the entire observation period with a slight increase of pH values at day1. 

Examples of T2w anatomical images and pH maps of one animal with severe AKI are shown in Figure 4C 

and 4D. 

 

CEST renal filtration fraction distinguishes between kidney damage recover and progression 

Since the pH-responsive contrast agent is completely excreted by kidneys, with no secretion or reabsorption, 

its detection in renal compartments can be considered an indirect measurement of renal filtration and changes 

in detection may reflect alterations in the glomerular filtration. Significant impairment of renal filtration 

measured by means of the filtration fraction estimate compared with values before surgery was detectable 

since 1 day after moderate and severe AKI (Figure 5). For animals with moderate AKI, filtration fraction of 

clamped kidney (0.56 ±0.21) was found to be significantly lower (P<0.01) than that of contralateral kidney 
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(0.84 ±0.16) at 1 day after injury. After moderate AKI, renal filtration nearly returned to baseline by day 7. 

After severe AKI, filtration impairment of clamped kidneys persisted until day 7 (0.57 ±0.05, 0.52 ±0.11 and 

0.38 ±0.12 after 1, 2 and 7 days, respectively; P<0.01).  

 

Correlation of renal pH values with histological damage 

MRI-CEST derived pH values significantly correlated with histological scores (r=0.87, P<0.01; Figure 3C). 

 

DISCUSSION 

The herein reported results show, for the first time, that MRI-CEST pH mapping allows the noninvasive 

detection and monitoring of renal function impairment after unilateral ischemia-induced AKI. The 

derangement of pH regulation was correlated to the decay of renal filtration function and to the severity of 

the morphological damage. 

In this study, CEST pH imaging revealed significantly higher renal pH values indicating renal function 

impairment, in the clamped kidneys compared with the control ones, even after 1 day, independently of the 

duration of the ischemic injury. At this time point serum biomarkers were unable to detect renal damage and, 

based on AKIN criteria,33 animals could not be classified as having AKI. On the other hand, 

histopathological damages at this time point were minor for the moderate AKI, with limited cast deposition 

and tubular dilatation (Figure S1). Therefore, our data would suggest that MRI-CEST pH mapping can be a 

promising tool for assessing single kidney injury and severity of AKI. 

We already established and validated the MRI-CEST pH mapping methodology for assessing AKI in mice 

induced by glycerol injection.30 Here, the unilateral model was chosen without nephrectomy since the renal 

function of the contralateral kidney is not compromised, leading to a milder and minimally invasive damage 

to identify physiological changes earlier than elevation of serum creatinine. In addition, the contralateral 

non-ischemic kidney may be used as a self-internal control for each animal due to the absence of functional 

and morphological damages. Furthermore, ischemia times of 20 and 40 min result in different kidney time 
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course damage evolution, with shorter times that allows for recovery, whereas prolonged ischemia times 

evolve in end-stage kidney disease.34, 35 

In this study, renal pH-values of the injured kidney significantly increased after AKI relative to the 

contralateral one, at both the ischemia times. This might be related to the impaired regulation of acid-base 

balance. In fact, the systemic HCO3
- concentration is regulated by kidneys through the absorption of all the 

filtered HCO3
- and the production of new HCO3

- to replace that consumed by non-volatile acids upon protein 

metabolism .17 The production of new HCO3
- is actually done by net acid excretion. It follows that with the 

reduction in number of functioning nephrons, the capacity of the kidney to excrete acids into urine or 

reabsorb bicarbonate is compromised, hence resulting in an increase of renal pH values. In addition, elevated 

renal pH values occurred just 1 day after AKI and persisted until 1 week in the the severe AKI model. 

Moreover, renal pH evolution significantly correlated with histopathologic-based scores, with a recovery of 

the renal damage after 7 days for the moderately injured kidneys, whereas a persistent damage was observed 

for the prolonged ischemia time (40 min). Therefore, MRI-CEST pH mapping allowed the distinction of 

moderate from severe AKI. 

Considering that functional renal impairment often precedes anatomical changes, imaging modalities are of 

interest owing to their capability of non-invasive and longitudinal assessment of renal function. Early 

functional changes have previously been investigated in several models of ischemia-reperfusion AKI 

following the administration of Gd-based contrast agents. Most of these studies addressed the quantification 

of renal perfusion and estimation of glomerular filtration rate both at preclinical and clinical levels.6, 36-39 

DCE-MRI methods are less time-consuming and costly than methods based on the clearance of injected 

tracers, and do not involve radiation issues, as in radionuclide renography.40 All these methods exploit the 

reduced filtration function and changes in renal microvasculature to report on the ischemia reperfusion 

damage. Here we exploited a FDA-approved radiographic contrast agent that, sharing similar size and 

distribution/elimination properties with Gd-based extracellular fluid agents, allows indirect detection of 

reduced renal function. In fact, as a consequence of the decreased glomerular ability to filter the injected 

contrast agents, a marked decrease in the filtration fraction estimate was observed following the damage. 

Despite this simple estimate does not provide information on glomerular filtration rate or on renal blood 
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flow, it was found to be correlated with the severity and with the evolution of the kidney damage. In 

addition, proof-of-concept studies have demonstrated that iopamidol and other radiographic agents can also 

provide perfusion estimates.41, 42 

Nevertheless, a major limitation of all these approaches relies in the assessment of only one function of the 

kidneys that is their filtration capability, while the balance of the acid-base homeostasis has never been 

addressed. It is important to recognize that disordered acid-base homeostasis contributes to the progression 

of chronic kidney disease and to increased morbidity and mortality in dialyzed patients.43 Interestingly, 

chronic kidney disease progression can be tempered throughout normalization of acid–base homeostasis.44 It 

follows that the CEST-pH mapping approach may play a fundamental role in assessing pH changes in 

kidney-related pathologies and in monitoring treatment response. Notably, the combined evaluation of two 

main factors that report on renal dysfunction, i.e. filtration fraction and renal pH values, is feasible only 

within this approach. 

A limitation of this study was the reduced kidney coverage by acquiring only the central slice. However, also 

MRI-based measurements of glomerular filtration rate are commonly acquired in few representative slices. 

Several approaches for increasing volume coverage within the MRI-CEST acquisition have been recently 

proposed.45, 46  

To conclude, we have demonstrated that MRI-CEST pH mapping can be a novel promising biomarker for 

diagnosis and monitoring of renal function, allowing an early detection of the occurrence of renal pathology 

and to distinguish moderate or severe AKI. 
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Figure legends 

Figure 1. Renal histological features. (A) Histopathological damage score was assessed at baseline, and at 1 

and 7 days after moderate (20 min) and severe (40 min) ischemia/reperfusion injury in mice. (B) 

Representative images of the outer external medulla region from H&E stained kidney sections of sham and 

after moderate or severe ischemia reperfusion injury. (Magnification 200x). 

Figure 2. Clinical biomarkers of ischemia-reperfusion injury. Clinical biomarker levels of (A) serum 

creatinine, (B) blood urea nitrogen and (C) urinary pH values for sham and renal ischemia-reperfusion 

injured mice were assessed at baseline, and at 1 and 7 days after moderate (20 min) and severe (40 min) 

ischemia/reperfusion injury in mice. 
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Figure 3. MRI-CEST pH assessment of ischemia-reperfusion injury and evolution. (A) Bar graph showing 

renal pH values in clamped and contralateral kidneys before and after moderate ischemia (20 min) 

reperfusion injury at several time points. (B) Bar graph showing renal pH values in clamped and contralateral 

kidneys before and after severe ischemia (40 min) reperfusion injury at several time points. (C) Correlation 

of histological score and MRI-CEST based pH values in mice imaged after moderate and severe ischemia 

reperfusion injury at day 0, day 1 and day 7. Significant differences compared with the contralateral kidney 

without AKI at the same time point and with baseline (PRE) are indicated as */*, respectively. * = P<0.05, 

** = P<0.01.  

Figure 4. MRI-CEST pH mapping detects renal pH changes and regional distribution of damage after 

moderate and severe unilateral AKI. (A,C) Representative T2-weighted anatomical images before and after 

moderate (A) and severe (C) AKI at different time points (day 1, day 2 and day 7) showing clamped (right) 

and contralateral normal kidney (left). (B,D) Representative MRI-CEST pH maps overimposed onto 

anatomical images before and after moderate (B) and severe (D) AKI at different time points (day 1, day 2 

and day 7) showing pronounced alkalinazation and reduced filtration (not coloured pixels within the renal 

region) of the pH-responsive contrast agent in clamped kidney in comparison to contralateral kidney. 

Figure 5. MRI-CEST filtration fraction assessment of ischemia reperfusion injury and evolution. (A) Bar 

graph showing filtration fraction values in clamped and contralateral kidneys before and after moderate 

ischemia (20 min) reperfusion injury at several time points. (B) Bar graph showing renal filtration fraction 

values in clamped and contralateral kidneys before and after severe ischemia (40 min) reperfusion injury at 

several time points. Significant differences compared with the contralateral kidney without AKI at the same 

time point and with baseline (PRE) are indicated as */*, respectively. * = P<0.05, ** = P<0.01, *** = 

P<0.001. 
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Figure 3 
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Figure S1. Average histological scores of renal damage. Clamped and control kidneys are indicated in red 

and blue, respectively. Values are presented as the mean ±standard deviations. 
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