109 research outputs found

    Correction to “Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge”

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L02603, doi:10.1029/2006GL028747

    Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L17606, doi:10.1029/2006GL026321.Submarine hydrothermal systems are hypothesized to be a potentially important source of monomethylmercury (MMHg) to the ocean, yet the amount of MMHg in vent fluids is unknown. Here, we report total Hg and MMHg concentrations in hydrothermal vent fluids sampled from the Sea Cliff site on the Gorda Ridge. MMHg is the dominant Hg species, and levels of total Hg are enhanced slightly compared to seawater. Hg is enriched in deposits surrounding the site, suggesting near-field deposition from fluid plumes, with rapid MMHg demethylation and scavenging of Hg(II) complexes. Assuming the flux of MMHg from Sea Cliff is representative of global submarine hydrothermal inputs, we estimate a flux of 0.1–0.4 Mmoles y−1, which may be attenuated by scavenging near the vents. However, deep waters are not typically known to be elevated in Hg, and thus we suggest that hydrothermal systems are not significant sources of MMHg to commercial fisheries.WHOI Academic Programs Office, the Penzance Endowed Discretionary Fund, NSF-OCE and EPA-STAR, NOAA-NUR

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Abstract Meter-scale AUV bathymetric mapping and ROV sampling of the entire 47 km-long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ~1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ~5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid-ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt-to-basaltic andesite sequence and an andesite-to-dacite-to-rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise. Plain Language Summary This study combines 1 m resolution bathymetry collected using an autonomous underwater vehicle, with chemical compositions of precisely located lava samples and ages of lava flows determined from short sediment cores collected using a remotely operated vehicle. The objective was to determine the history of an entire 47 km long segment of the global mid-ocean ridge system. The ridge segment studied is named the Alarcon Rise and is located at the mouth of the Gulf of California. The Rise is bounded to the north and south by strike-slip faults that offset the Rise from adjacent segments of the spreading ridge system. Such faults are usually thought to be parallel to the direction of seafloor spreading, but these have an oblique component to their movement that makes space for magma to be injected along the faults where it uplifts hills of sediment and sometimes erupts. Most lavas erupted along midocean ridges are basalts, but some highly unusual silica-rich lavas were identified by their rough surface texture and sampled. These lavas include the most silica-rich ones found along the entire global submarine mid-ocean ridge system. They formed, not by melting of nearby continental crust, but from common basalt by extreme amounts of crystallization of minerals, leaving a small volume of remaining high-silica magma. The complete mapping and closely spaced sampling along the Rise show that old ideas indicating a central point of magma delivery from the underlying mantle for each ridge segment followed by shallow transport of the magmas along the ridge are supported by the central distribution of (1) hydrothermally active sites, (2) the youngest, hottest, most fluid lava flows, and (3) the most voluminous lava flows that accumulate to form the shallowest portion of the ridge segment. The study shows how magmas are transported at shallow depths along the ridge and even around the corners in the adjacent faults

    New Insights into the mineralogy of the Atlantis II deep metalliferous sediments, Red Sea

    Get PDF
    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Meter‐scale AUV bathymetric mapping and ROV sampling of the entire 47 km‐long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ∼1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ∼5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid‐ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt‐to‐basaltic andesite sequence and an andesite‐to‐dacite‐to‐rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Meter‐scale AUV bathymetric mapping and ROV sampling of the entire 47 km‐long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ∼1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ∼5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid‐ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt‐to‐basaltic andesite sequence and an andesite‐to‐dacite‐to‐rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise

    Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    Get PDF
    A new International Continental Drilling Program (ICDP) project will drill through the 50-yearoldedifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963–1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions

    Effects of marital/dependency status on reenlistment behavior of second-term enlisted females.

    Get PDF
    This thesis investigates the relationship of reenlistment decisions of second-term enlisted women in the military to their marital and dependent status, using individual-level data from the 1985 DoD Survey of Officer and Enlisted Personnel. Actual reenlistment status (December 1988) of each survey respondent was merged with the data set. Logit analysis was used to estimate the likelihood of a respondent choosing to reenlist given her set of individual characteristics. Separate logit models were estimated for the following groups of second-term personnel: single women without children, single women with children, married women without children, and married women with children. Certain variables affected all groups similarly (pay grade, minority status, perception of civilian job alternatives). Others exerted differential impact on subgroups (job satisfaction, traditionality of job). Results illustrated differential reenlistment behavior based upon the presence of children. Results may be used to target reenlistment incentives for specified marital/dependent status groups.http://archive.org/details/effectsofmarital00edwaLieutenant, United States NavyApproved for public release; distribution is unlimited

    Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland

    Get PDF
    We studied the seismic velocity structure beneath the Krafla central volcano, NE Iceland, by performing 3-D tomographic inversions of 1453 earthquakes recorded by a temporary local seismic network between 2009 and 2012. The seismicity is concentrated primarily around the Leirhnjúkur geothermal field near the center of the Krafla caldera. To obtain robust velocity models, we incorporated active seismic data from previous surveys. The Krafla central volcano has a relatively complex velocity structure with higher P wave velocities (V_p) underneath regions of higher topographic relief and two distinct low-V_p anomalies beneath the Leirhnjúkur geothermal field. The latter match well with two attenuating bodies inferred from S wave shadows during the Krafla rifting episode of 1974–1985. Within the Leirhnjúkur geothermalreservoir, we resolved a shallow (−0.5 to 0.5 km below sea level; bsl) region with low-V_p/V_s values and a deeper (0.5–1.5 km bsl) high-V_p/V_s zone. We interpret the difference in the velocity ratios of the two zones to be caused by higher rock porosities and crack densities in the shallow region and lower porosities and crack densities in the deeper region. A strong low-V_p/V_s anomaly underlies these zones, where a superheated steam zone within felsic rock overlies rhyolitic melt
    corecore