253 research outputs found

    Cutaneous expression of growth-associated protein 43 is not a compelling marker for human nerve regeneration in carpal tunnel syndrome.

    Get PDF
    Growth-associated protein 43 (GAP-43) has long been used as a marker for nerve regeneration following nerve injury, with numerous in vitro and animal studies showing its upregulation in regenerating neurons. In humans, expression of GAP-43 has predominantly been examined in skin biopsies from patients with peripheral neuropathies; with several studies showing a reduction in GAP-43 immunoreactive cutaneous nerve fibres. However, it remains elusive whether cutaneous GAP-43 is a valid marker for human nerve regeneration. Here, we present a cohort of 22 patients with electrodiagnostically confirmed carpal tunnel syndrome (CTS), used as a model system for focal nerve injury and neural regeneration after decompression surgery. We evaluate GAP-43 immunoreactivity and RNA expression levels in finger skin biopsies taken before and 6 months after surgery, relative to healthy controls. We further classify patients as 'regenerators' or 'non-regenerators' based on post-surgical epidermal re-innervation. We demonstrate that patients with CTS have lower GAP-43 positive intra-epidermal nerve fibre density (IENFD) before surgery than healthy controls. However, this difference disappears when normalising for total IENFD. Of note, we found surgery did not change GAP-43 expression in IENF, with no differences both in patients who were classified as regenerators and non-regenerators. We also did not identify pre-post surgical differences in cutaneous GAP-43 gene expression or associations with regeneration. These findings suggest cutaneous GAP-43 may not be a compelling marker for nerve regeneration in humans

    Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure

    Get PDF
    While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart

    Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A

    Get PDF
    Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21WAF1/CIP1) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of other checkpoint proteins and CDK inhibitors did not affect apoptosis. In telomerase, inhibited cell loss of p21 leads to E2F1- and p53-mediated transcriptional activation of p53-upregulated modulator of apoptosis, resulting in increased apoptosis. Combined genetic or pharmacological inhibition of telomerase and p21 synergistically suppresses tumor growth. Furthermore, we demonstrate that simultaneous inhibition of telomerase and p21 also suppresses growth of tumors containing mutant p53 following pharmacological restoration of p53 activity. Collectively, our results establish that inactivation of p21 leads to increased apoptosis upon telomerase inhibition and thus identify a genetic vulnerability that can be exploited to treat many human cancers containing either wild-type or mutant p53

    Rare B decays and Tevatron top-pair asymmetry

    Full text link
    The recent Tevatron result on the top quark forward-backward asymmetry, which deviates from its standard model prediction by 3.4σ\sigma, has prompted many authors to build new models to account for this anomaly. Among the various proposals, we find that those mechanisms which produce ttˉt\bar t via tt- or uu-channel can have a strong correlation to the rare B decays. We demonstrate this link by studying a model with a new charged gauge boson, WW'. In terms of the current measurements on BπKB\to \pi K decays, we conclude that the branching ratio for BπKˉ0B^-\to \pi^- \bar K^0 is affected most by the new effects. Furthermore, using the world average branching ratio for the exclusive B decays at 2σ2\sigma level, we discuss the allowed values for the new parameters. Finally, we point out that the influence of the new physics effects on the direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final version to appear journa

    Progress Towards the Miniaturization of an Ultrasonic Scalpel for Robotic Endoscopic Surgery Using Mn:PIN-PMN-PT High Performance Piezocrystals

    Get PDF
    Mn:PIN-PMN-PT piezocrystals are under consideration for potential use in miniaturised ultrasonic scalpels for robotic minimally-invasive surgery where small size and light weight may be advantageous. Electromechanical coupling coefficient k > 0.9 for both [001] and [011] poled Mn:PIN-PMN-PT was calculated, confirming the well-recognized higher efficiency of this material when compared to standard piezoceramics. Novel transducer design strategies have been explored, and outcomes are discussed. The introduction of components with additional compliance in a standard d 31 mode transducer has been shown to drop the resonant frequency of the first longitudinal mode by more than 17%, with more than 75% improvement in tip/blade displacement. Results suggest that the combination of high performance piezocrystals with highly compliant components may be a useful route to follow to achieve our miniaturisation target

    From ether to acid: a plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Get PDF
    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80to C82tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.Seventh Framework Programme (European Commission) (ERC Grant 247153

    Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes

    Get PDF
    Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands’ surrounding tissue. These results suggest that in the pitchers’ tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins

    Screen-printed ultrasonic 2-D matrix array transducers for microparticle manipulation

    Get PDF
    This paper reports the development of a two-dimensional thick film lead zirconate titanate (PZT) ultrasonic transducer array, operating at frequency approximately 7.5 MHz, to demonstrate the potential of this fabrication technique for microparticle manipulation. All layers of the array are screen-printed then sintered on an alumina substrate without any subsequent patterning processes. The thickness of the thick film PZT is 139 ± 2 μm, the element pitch of the array is 2.3 mm, and the dimension of each individual PZT element is 2 × 2 mm2 with top electrode 1.7 × 1.7 mm2. The measured relative dielectric constant of the PZT is 2250 ± 100 and the dielectric loss is 0.09 ± 0.005 at 10 kHz. Finite element analysis was used to predict the behaviour of the array and to optimise its configuration. Electrical impedance spectroscopy and laser vibrometry were used to characterise the array experimentally. The measured surface motion of a single element is on the order of tens of nanometres with a 10 Vpeak continuous sinusoidal excitation. Particle manipulation experiments have been demonstrated with the array by manipulating Ø10 μm polystyrene microspheres in degassed water. The simplified array fabrication process and the bulk production capability of screen-printing suggest potential for the commercialisation of multilayer planar resonant devices for ultrasonic particle manipulation
    corecore