115 research outputs found

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Automatic structure classification of small proteins using random forest

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Random forest, an ensemble based supervised machine learning algorithm, is used to predict the SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a template structure with an equal number of secondary structure elements (SSEs). An initial assessment of random forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger domains is demonstrated by applying it to domains consisting of four, five and six SSEs.</p> <p><b>Result</b>s</p> <p>Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP <it>Class, Fold, Super-family </it>or <it>Family </it>levels, the predictive quality of the model in terms of Matthew's correlation coefficient (MCC) ranged from 0.61 to 0.83. As the number of constituent SSEs increases the MCC for classification to different structural levels decreases.</p> <p>Conclusions</p> <p>The utility of random forest in classifying domains from the place-holder classes of SCOP to the true <it>Class, Fold, Super-family </it>or <it>Family </it>levels is demonstrated. Issues such as introduction of a new structural level in SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned to the SCOP classification hierarchy.</p

    Pigmentos lipossolúveis e hidrossolúveis em plantas de salvínia sob toxicidade por cromo

    Get PDF
    Devido à intensa utilização industrial, o cromo é considerado um importante poluente ambiental. O presente trabalho objetivou determinar os teores de pigmentos hidro e lipossolúveis em plantas de salvínia expostas a concentrações crescentes de Cr, visando estabelecer parâmetros bioquímicos para utilização dessa macrófita em programas de biomonitoramento e/ou fitorremediação da poluição causada por esse poluente metálico em ambientes aquáticos. As plantas foram submetidas a concentrações crescentes de Cr e avaliadas após quatro, seis e dez dias de tratamento. Os resultados dos ensaios permitiram concluir que plantas de salvínia sob condições de estresse por Cr apresentam reduções nas concentrações das clorofilas a, b e total e, em contraste, aumentos nas concentrações de antocianinas totais. Embora a concentração de carotenoides totais não tenha sido alterada em resposta ao Cr, as variações nas concentrações dos demais pigmentos lipossolúveis e dos pigmentos hidrossolúveis observadas nas folhas das plantas de salvínia podem ser utilizadas como parâmetros bioquímicos de biomonitoramento da poluição causada por esse elemento metálico em ambientes aquáticos.Due to widespread industrial use, chromium is considered a serious environmental pollutant. This study aimed to determine the content of hydrosoluble and liposoluble pigments in salvinia plants exposed to increasing concentrations of Cr, to establish biochemical parameters for the use of macrophyta in pollution bio-monitoring programs and/or phyto-remediation in aquatic environments by this pollutant metal. The plants were exposed to increasing concentrations of Cr and evaluated after four, six, and ten days of treatment. The test results showed that salvinia plants under stress conditions for Cr exhibit decreases in the concentrations of chlorophylls a, b, and total, and, in contrast, increases in anthocyanin concentrations. Although the concentration of carotenoids has not been altered in response to Cr, the variations in the concentrations of other liposoluble and hydrosoluble pigments found in salvinia plant leaves can be used as biochemical parameters for biomonitoring of pollution caused by this metallic element in aquatic environments

    Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Full text link

    Measurement of the W-boson mass in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8 × 106 candidates in the W → μν channel and 5.9 × 106 candidates in the W → eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW = 80370 ± 7 (stat.) ± 11(exp. syst.) ± 14 (mod. syst.) MeV = 80370 ± 19 MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+ − mW− = − 29 ± 28 MeV

    Measurement of the W-boson mass in pp collisions at s√=7TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370=80370±7 (stat.)±11(exp. syst.)±14 (mod. syst.) MeV±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+−mW−=−29±28 MeV

    Measurement of the W-boson mass in pp collisions at s√=7TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370=80370±7 (stat.)±11(exp. syst.)±14 (mod. syst.) MeV±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+−mW−=−29±28 MeV
    corecore