83 research outputs found

    Optical phase noise and carrier-envelope offset noise of mode-locked lasers

    Get PDF
    The timing jitter, optical phase noise, and carrier-envelope offset (CEO) noise of passively mode-locked lasers are closely related. New key results concern analytical calculations of the quantum noise limits for optical phase noise and CEO noise. Earlier results for the optical phase noise of actively mode-locked lasers are generalized, particularly for application to passively mode-locked lasers. It is found, for example, that mode locking with slow absorbers can lead to optical linewidths far above the Schawlow-Townes limit. Furthermore, mode-locked lasers can at the same time have nearly quantum-limited timing jitter and a strong optical excess phase noise. A feedback timing stabilization via cavity length control can, depending on the situation, reduce or greatly increase the optical phase noise, while not affecting the CEO noise. Besides presenting such findings, the paper also tries to clarify some basic aspects of phase noise in mode-locked laser

    Relative timing jitter measurements with an indirect phase comparison method

    Get PDF
    We propose and demonstrate experimentally a method for the sensitive measurement of the relative timing jitter of two mode-locked lasers, which can be either free-running or timing-synchronized to a common reference oscillator. The method is based on the indirect comparison of the phases of two photodetector outputs, using a microwave oscillator, the noise of which does not affect the results, electronic mixers, and a sampling oscilloscope. We carefully analyze and experimentally demonstrate the potential of this method. Compared to phase detector methods, it has a broader scope of applications and a lower sensitivity to intensity noise. We also obtained data on the coupling of intensity to timing noise in photodetector

    Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems

    Get PDF
    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0

    Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters

    Full text link
    We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.Comment: 4 pages, RevTex, 2 PostScript figure

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur

    Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

    Full text link
    There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK\Lambda K and ΣK\Sigma K, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large-xx region, the perturbative contributions are more significant in the small-xx region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of xx. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02<x<0.030.02 < x < 0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.Comment: 14 pages, 4 figures, figures comparing theoretical calculations with NNPDF global analysis added, accepted for publication in EPJ

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore