58 research outputs found

    ORS1, an H(2)O(2)-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana

    Get PDF
    We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H(2)O(2)), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H(2)O(2) treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H(2)O(2)-dependent signaling pathways

    Contrasting metabolic profiles of tasty Andean varieties of tomato fruit in comparison with commercial ones

    Get PDF
    BACKGROUND The fruits of most commercial tomato cultivars (Solanum lycopersicum L.) are deficient in flavour. In contrast, traditional ‘criollo’ tomato varieties are appreciated for fruit of excellent organoleptic quality. Small farmers from the Andean valleys in Argentina have maintained their own tomato varieties, which were selected mainly for flavour. This work aims to correlate the chemical composition of the fruit with the sensory attributes of eight heirloom tomato varieties. The long‐term goal is to identify potential candidate genes capable of altering the chemicals involved in flavour. RESULTS A sensory analysis was conducted and the metabolomics of fruit were determined. The data revealed that defined tomato aroma and sourness correlated with citrate and several volatile organic compounds (VOC), such as α‐terpineol, p‐menth‐1‐en‐9‐al, linalool and 3,6‐dimethyl‐2,3,3a,4,5,7a‐hexahydrobenzofuran (DMHEX), a novel volatile recently identified in tomato. Two sensory attributes – sweetness and a not‐acidic taste – correlated with the characteristic tomato taste, and also with fructose, glucose, and two VOCs, benzaldehyde, and 2‐methyl‐2‐octen‐4‐one. CONCLUSIONS These data provide new evidence of the complex chemical combination that induced the flavour and aroma of the good‐tasting ‘criollo’ tomato fruit. That is, the compounds that correlated with defined tomato aroma and acidic taste did not correlate with sweetness, or with characteristic tomato taste.Instituto de BiotecnologíaFil: D'Angelo, Matilde. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zanor, María I. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sance, María. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Cortina, Pablo Ramiro. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Boggio, Silvana B. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Asprelli, Pablo. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Carrari, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Universidade de São Paulo. Departamento de Botânica. Instituto de Biociências; BrasilFil: Santiago, Ana N. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Asis, Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Peralta, Iris Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza. Instituto Argentino de Investigaciones de Zonas Aridas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Valle, Estela M. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    La expresión de una flavodoxina cianobacteriana en plástidos de tomate incrementa el índice de cosecha y la tolerancia a estrés oxidativo

    Get PDF
    En un futuro no lejano, la humanidad deberá afrontar el aumento de la población junto al límite de la tierra cultivable, el estrés ambiental y el cambio climático, del cual ya somos parte. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) estima que, para abastecer a la población mundial estimada en el año 2050, la producción de alimentos deberá crecer en torno a un 70%. Esta alta demanda exige el avance en la investigación de nuevas tecnologías que incrementen el índice de cosecha de los cultivos. En particular, el tomate (Solanum lycopersicum) es un fruto muy consumido a nivel mundial. Su importancia radica en su alto contenido de vitaminas al igual que antioxidantes. Debido a esto, en este proyecto nos propusimos generar plantas de tomate transgénicas que sobre-expresen la proteína cianobacteriana flavodoxina (Fld), y evaluar si éstas manifiestan mejoras agrícolas y tolerancia frente a estrés oxidativo, tal como fue demostrado en tabaco. Los resultados obtenidos demostraron una mejora en el índice de cosecha del cultivo. Las plantas que expresan Fld en cloroplastos tienen una menor expansión foliar, mayor cantidad de frutos, aunque de menor tamaño en comparación con la línea salvaje. Además, estas plantas demostraron una tolerancia aumentada frente a estrés oxidativo. Estos resultados generan interés en el estudio de la expresión de Fld en el desarrollo del fruto y cómo esta proteína afecta la expansión celularFil: Arce, Rocío C.. Universidad Nacional de RosarioFil: Mayta, Martín L.. Universidad Nacional de RosarioFil: Pagani, Constanza E.. Universidad Nacional de RosarioFil: Zurbriggen, Matías D.; . Universidad Nacional de RosarioFil: Valle, Estela M.. Universidad Nacional de RosarioFil: Zanor, María I.. Universidad Nacional de RosarioFil: Carrillo, Néstor. Universidad Nacional de Rosari

    JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis

    No full text
    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H(2)O(2) treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H(2)O(2) level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A

    A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

    Get PDF
    Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes

    Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation

    Get PDF
    The postharvest evolution of Penjar tomatoes has been studied in four accessions representative of the variability of the varietal type. The long-term shelf life of these materials, which carry the alc allele, was confirmed with 31.2-59.1% of commercial fruits after 6 months of effective conservation at room temperature and a limited loss of weight (21.1-27.9%). Aroma in Penjar tomatoes is differentiated from other tomato varieties by a characteristic 'sharp-floral' aroma descriptor. The evolution of the 'sharp-floral' aroma during postharvest showed a peak of intensity at 2 months of postharvest, though in one accession a delay of 2 months in this response was detected. Out of 25 volatiles analysed, including main and background notes, a reverse iPLS variable selection revealed that the main candidates behind this aromatic behaviour are ¿-terpineol, trans-2-hexenal, 6-methyl-5-hepten-2-one, trans-2-octenal, ¿-pinene, ß-ionone, 2 + 3-methylbutanol and phenylacetaldehyde. Between harvest and 2 months postharvest, most compounds reduced considerably their concentration, while the intensity of the 'sharp-floral' descriptor increased, which means that probably there is a rearrangement of the relative concentrations among volatiles that may lead to masking/unmasking processes. © 2011 Springer-Verlag.This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentacio de la Comunidad Valenciana, the Fundacion de la Comunidad Valenciana para la Investigacion Agroalimentaria (AGROALIMED) and from the Departament d'Agricultura, Alimentacio i Accio Rural (DAR) de la Generalitat de Catalunya.Casals Missio, J.; Cebolla Cornejo, J.; Rosello Ripolles, S.; Beltran Arandes, J.; Casanas, F.; Nuez Viñals, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology. 233(2):331-342. doi:10.1007/s00217-011-1517-6S3313422332Petro-Turza M (1987) Flavor of tomato and tomato products. Food Rev Int 2:309–351Butterry RG (1993) Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In: Acree TE, Teranishi R (eds) Flavor science: sensible principles and techniques. American Chemical Society, WashingtonGoff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee MJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896Zanor MI, Rambla JL, Chaïb J, Steppa A, Medina A, Granell A, Fernie AR, Causse M (2009) Metabolic characterization of loci affecting sensory attributes allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60:2139–2154Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58:1106–1114Boukobza F, Taylor AJ (2002) Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biol Technol 25:321–331Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346Giovannoni JJ, Tanksley SD, Vrebalov J, Noensie E (2004) NOR gene for use in manipulation of fruit quality and ethylene response. US Patent No 5,234,834 issued 13 July 2004McGlasson WB, Last JH, Shaw KJ, Meldrum SK (1987) Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. HortScience 22:632–634Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35:1013–1022Kovács K, Rupert CF, Tikunov Y, Graham N, Bradley G, Seymour GB, Bovy AG, Grierson D (2009) Effect of pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry 70:1003–1008Gao HY, Zhu BZ, Zhu HL, Zhang YL, Xie YH, Li YC, Luo YB (2007) Effect of suppression of ethylene biosynthesis on flavour products in tomato fruits. Russ J Plant Physiol 54:80–88Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 53:3142–3148Kopeliovitch E, Mizrahi Y, Rabinowitch D, Kedar N (1980) Physiology of the mutant alcobaca. Physiol Plant 48:307–311Casals J, Pacual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F (2011) Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol. doi: 10.1007/s10722-011-9677-6Kuzyomenskii AV (2007) Effect of cumulative polymery of tomato keeping life genes. Cytol Genet 41:268–275Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852Moretti CL, Baldwin EA, Sargent SA, Huber DJ (2002) Internal bruising alters aroma volatile profiles in tomato fruit tisúes. HortScience 37:378–382Buttery RG, Teranishi R, Ling LC (1987) Fresh tomato aroma volatiles: a qualitative study. J Agric Food Chem 35:540–544Romero del Castillo R, Valero J, Casañas F, Costell E (2008) Training validation and maintenance of a panel to evaluate the texture of dry beans (Phaseolus vulgaris L.). J Sens Stud 23:303–319Beltran J, Serrano E, López FJ, Peruga A, Valcárcel M, Roselló S (2006) Comparison of two quantitative GC-MS methods for analysis of tomato aroma based on purge-and-trap and on solid-phase microextraction. Anal Bioanal Chem 385:1255–1264Martens H, Naes T (1989) Multivariate Calibration. Wiley, New YorkWise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS (2006) Chemometrics tutorial for PLS_Toolbox and Solo. Eigenvector Research, WenatcheeHongsoongnern P, Chambers E (2008) A lexicon for texture and flavor characteristics of fresh and processed tomatoes. J Sens Stud 23:583–599Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc 54:413–419Javanmardi J, Kubota C (2006) Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol Technol 41:151–155Kader AA (1986) Effects of postharvest handling procedures on tomato quality. Acta Hort 190:209–222Maul F, Sargent SA, Sims CA, Baldwin EA, Balaban MO, Huber DJ (2000) Tomato flavor and aroma quality as affected by storage temperature. J Food Sci 65:1228–1237Krumbein A, Auerswald H (1998) Characterization of aroma volatiles in tomatoes by sensory analyses. Nahrung 6:S395–S399Tandon KS, Baldwin EA, Shewfelt RL (2000) Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum Mill.) as affected by the medium of evaluation. Postharvest Biol Technol 20:261–268Cebolla-Cornejo J, Roselló S, Valcárcel M, Serrano E, Beltran J, Nuez F (2011) Evaluation of genotype and environment effects on taste and aroma flavour components of Spanish fresh tomato varieties. J Agric Food Chem 59:2440–2450Carbonell-Barrachina AA, Agustí A, Ruiz JJ (2006) Analysis of flavor volatile compounds by dynamic headspace in traditional and hybrid cultivars of Spanish tomatoes. Eur Food Res Technol 222:536–542Alonso A, Vázquez-Araújo L, García-Martínez S, Ruiz JJ, Carbonell Barrachina AA (2009) Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur Food Res Technol 230:315–323Liggett E, Drake MA, Delwiche JF (2008) Impact of flavor attributes on consumer liking of Swiss cheese. J Dairy Sci 91:466–476Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55:9170–9176Xu Y, Barringer S (2010) Comparison of tomatillo and tomato volatile compounds in the headspace by selected ion flow tube mass spectrometry (SIFT-MS). J Food Sci 75:C268–C273Berna AZ, Lammertyn J, Saevels S, Di Natale C, Nicolai BM (2004) Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sens Actuators B Chem 97:324–333Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL, Tandon KS (1998) Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Hortic Sci 12:906–915Krumbein A, Peters P, Brückner B (2004) Flavour compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol Technol 32:15–2

    Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth

    Get PDF
    Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (Fv/Fm), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism

    The expanded tomato fruit volatile landscape

    Full text link
    [EN] The present review aims to synthesize our present knowledge about the mechanisms implied in the biosynthesis of volatile compounds in the ripe tomato fruit, which have a key role in tomato flavour. The difficulties in identifiying not only genes or genomic regions but also individual target compounds for plant breeding are addressed. Ample variability in the levels of almost any volatile compound exists, not only in the populations derived from interspecific crosses but also in heirloom varieties and even in commercial hybrids. Quantitative trait loci (QTLs) for all tomato aroma volatiles have been identified in collections derived from both intraspecific and interspecific crosses with different wild tomato species and they (i) fail to co-localize with structural genes in the volatile biosynthetic pathways and (ii) reveal very little coincidence in the genomic regions characterized, indicating that there is ample opportunity to reinforce the levels of the volatiles of interest. Some of the identified genes may be useful as markers or as biotechnological tools to enhance tomato aroma. Current knowledge about the major volatile biosynthetic pathways in the fruit is summarized. Finally, and based on recent reports, it is stressed that conjugation to other metabolites such as sugars seems to play a key role in the modulation of volatile release, at least in some metabolic pathways.We wish to thank the Metabolomics facility at the IBMCP for technical assistance. AG was supported by grants from MinECO and FECYT. This work was facilitated by the European-funded COST action FA1106 QualityFruit.Rambla Nebot, JL.; Tikunov, Y.; Monforte Gilabert, AJ.; Bovy, A.; Granell Richart, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany. 65(16):4613-4623. doi:10.1093/jxb/eru128S461346236516Abegaz, E. G., Tandon, K. S., Scott, J. W., Baldwin, E. A., & Shewfelt, R. L. (2004). Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology, 34(3), 227-235. doi:10.1016/j.postharvbio.2004.05.023Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.xBaldwin, E. A., Goodner, K., Plotto, A., Pritchett, K., & Einstein, M. (2004). Effect of Volatiles and their Concentration on Perception of Tomato Descriptors. Journal of Food Science, 69(8), S310-S318. doi:10.1111/j.1750-3841.2004.tb18023.xBaldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35(6), 1013-1022. doi:10.21273/hortsci.35.6.1013Bender, G., Hummel, T., Negoias, S., & Small, D. M. (2009). Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors. Behavioral Neuroscience, 123(3), 481-489. doi:10.1037/a0015065Bezman, Y., Mayer, F., Takeoka, G. R., Buttery, R. G., Ben-Oliel, G., Rabinowitch, H. D., & Naim, M. (2003). Differential Effects of Tomato (Lycopersicon esculentumMill) Matrix on the Volatility of Important Aroma Compounds†. Journal of Agricultural and Food Chemistry, 51(3), 722-726. doi:10.1021/jf020892hButtery, R. G., Seifert, R. M., Guadagni, D. G., & Ling, L. C. (1971). Characterization of additional volatile components of tomato. Journal of Agricultural and Food Chemistry, 19(3), 524-529. doi:10.1021/jf60175a011Buttery, R. G., Takeoka, G., Teranishi, R., & Ling, L. C. (1990). Tomato aroma components: identification of glycoside hydrolysis volatiles. Journal of Agricultural and Food Chemistry, 38(11), 2050-2053. doi:10.1021/jf00101a010Buttery, R. G., Teranishi, R., Flath, R. A., & Ling, L. C. (1989). Fresh Tomato Volatiles. ACS Symposium Series, 213-222. doi:10.1021/bk-1989-0388.ch017Buttery, R. G., Teranishi, R., Ling, L. C., Flath, R. A., & Stern, D. J. (1988). Quantitative studies on origins of fresh tomato aroma volatiles. Journal of Agricultural and Food Chemistry, 36(6), 1247-1250. doi:10.1021/jf00084a030Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., … Fernie, A. R. (2006). Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4), 1380-1396. doi:10.1104/pp.106.088534Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.xCausse, M. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. Journal of Experimental Botany, 53(377), 2089-2098. doi:10.1093/jxb/erf058Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608Du, X., Finn, C. E., & Qian, M. C. (2010). Bound Volatile Precursors in Genotypes in the Pedigree of ‘Marion’ Blackberry (RubusSp.). Journal of Agricultural and Food Chemistry, 58(6), 3694-3699. doi:10.1021/jf9034089Floss, D. S., & Walter, M. H. (2009). Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior, 4(3), 172-175. doi:10.4161/psb.4.3.7840Gardner, H. W., Grove, M. J., & Salch, Y. P. (1996). Enzymic Pathway to Ethyl Vinyl Ketone and 2-Pentenal in Soybean Preparations. Journal of Agricultural and Food Chemistry, 44(3), 882-886. doi:10.1021/jf950509rGoff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., & Klee, H. J. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences, 109(46), 19009-19014. doi:10.1073/pnas.1216515109Granell, A., & Rambla, J. L. (2013). Biosynthesis of Volatile Compounds. The Molecular Biology and Biochemistry of Fruit Ripening, 135-161. doi:10.1002/9781118593714.ch6Guadagni, D. G., Buttery, R. G., & Okano, S. (1963). Odour thresholds of some organic compounds associated with food flavours. Journal of the Science of Food and Agriculture, 14(10), 761-765. doi:10.1002/jsfa.2740141014Hemmerlin, A., Hoeffler, J.-F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., … Bach, T. J. (2003). Cross-talk between the Cytosolic Mevalonate and the Plastidial Methylerythritol Phosphate Pathways in Tobacco Bright Yellow-2 Cells. Journal of Biological Chemistry, 278(29), 26666-26676. doi:10.1074/jbc.m302526200Howe, G. A., Lee, G. I., Itoh, A., Li, L., & DeRocher, A. E. (2000). Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase. Plant Physiology, 123(2), 711-724. doi:10.1104/pp.123.2.711Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.xKlee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.xKlee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003Koeduka, T., Fridman, E., Gang, D. R., Vassao, D. G., Jackson, B. L., Kish, C. M., … Pichersky, E. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences, 103(26), 10128-10133. doi:10.1073/pnas.0603732103Kovács, K., Fray, R. G., Tikunov, Y., Graham, N., Bradley, G., Seymour, G. B., … Grierson, D. (2009). Effect of tomato pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry, 70(8), 1003-1008. doi:10.1016/j.phytochem.2009.05.014Kochevenko, A., Araújo, W. L., Maloney, G. S., Tieman, D. M., Do, P. T., Taylor, M. G., … Fernie, A. R. (2012). Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits. Molecular Plant, 5(2), 366-375. doi:10.1093/mp/ssr108KURODA, H., OSHIMA, T., KANEDA, H., & TAKASHIO, M. (2005). Identification and Functional Analyses of Two cDNAs That Encode Fatty Acid 9-/13-Hydroperoxide Lyase (CYP74C) in Rice. Bioscience, Biotechnology, and Biochemistry, 69(8), 1545-1554. doi:10.1271/bbb.69.1545Lê, S., & Ledauphin, S. (2006). You like tomato, I like tomato: Segmentation of consumers with missing values. Food Quality and Preference, 17(3-4), 228-233. doi:10.1016/j.foodqual.2005.08.001Lengard, V., & Kermit, M. (2006). 3-Way and 3-block PLS regressions in consumer preference analysis. Food Quality and Preference, 17(3-4), 234-242. doi:10.1016/j.foodqual.2005.05.005Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, As Revealed by Comparative Genetic Analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142-3148. doi:10.1021/jf047927tLiavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163(3), 348-357. doi:10.1016/j.jplph.2005.11.006Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.xMaloney, G. S., Kochevenko, A., Tieman, D. M., Tohge, T., Krieger, U., Zamir, D., … Klee, H. J. (2010). Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato. Plant Physiology, 153(3), 925-936. doi:10.1104/pp.110.154922Marilley, L. (2004). Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology, 90(2), 139-159. doi:10.1016/s0168-1605(03)00304-0Marlatt, C., Ho, C. T., & Chien, M. (1992). Studies of aroma constituents bound as glycosides in tomato. Journal of Agricultural and Food Chemistry, 40(2), 249-252. doi:10.1021/jf00014a016Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9(3), 274-280. doi:10.1016/j.pbi.2006.03.002Matsui, K., Kurishita, S., Hisamitsu, A., & Kajiwara, T. (2000). A lipid-hydrolysing activity involved in hexenal formation. Biochemical Society Transactions, 28(6), 857-860. doi:10.1042/bst0280857Matsui, K., Ujita, C., Fujimoto, S., Wilkinson, J., Hiatt, B., Knauf, V., … Feussner, I. (2000). Fatty acid 9- and 13-hydroperoxide lyases from cucumber1. FEBS Letters, 481(2), 183-188. doi:10.1016/s0014-5793(00)01997-9Mita, G., Quarta, A., Fasano, P., De Paolis, A., Di Sansebastiano, G. P., Perrotta, C., … Santino, A. (2005). Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies*. Journal of Experimental Botany, 56(419), 2321-2333. doi:10.1093/jxb/eri225Moummou, H., Tonfack, L. B., Chervin, C., Benichou, M., Youmbi, E., Ginies, C., … van der Rest, B. (2012). Functional characterization of SlscADH1, a fruit-ripening-associated short-chain alcohol dehydrogenase of tomato. Journal of Plant Physiology, 169(15), 1435-1444. doi:10.1016/j.jplph.2012.06.007Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584(14), 2965-2973. doi:10.1016/j.febslet.2010.05.045Negoias, S., Visschers, R., Boelrijk, A., & Hummel, T. (2008). New ways to understand aroma perception. Food Chemistry, 108(4), 1247-1254. doi:10.1016/j.foodchem.2007.08.030Noordermeer, M. A., Veldink, G. A., & Vliegenthart, J. F. . (1999). Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z :2E -enal isomerase. FEBS Letters, 443(2), 201-204. doi:10.1016/s0014-5793(98)01706-2Ortiz-Serrano, P., & Gil, J. V. (2007). Quantitation of Free and Glycosidically Bound Volatiles in and Effect of Glycosidase Addition on Three Tomato Varieties (Solanum lycopersicumL.). Journal of Agricultural and Food Chemistry, 55(22), 9170-9176. doi:10.1021/jf0715673Ortiz-Serrano, P., & Gil, J. V. (2010). Quantitative Comparison of Free and Bound Volatiles of Two Commercial Tomato Cultivars (Solanum lycopersicumL.) during Ripening. Journal of Agricultural and Food Chemistry, 58(2), 1106-1114. doi:10.1021/jf903366rOrzaez, D., Medina, A., Torre, S., Fernández-Moreno, J. P., Rambla, J. L., Fernández-del-Carmen, A., … Granell, A. (2009). A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation. Plant Physiology, 150(3), 1122-1134. doi:10.1104/pp.109.139006Piombino, P., Sinesio, F., Moneta, E., Cammareri, M., Genovese, A., Lisanti, M. T., … Grandillo, S. (2013). Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking. Food Research International, 50(1), 409-419. doi:10.1016/j.foodres.2012.10.033Rick, C. M., Uhlig, J. W., & Jones, A. D. (1994). High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proceedings of the National Academy of Sciences, 91(26), 12877-12881. doi:10.1073/pnas.91.26.12877Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.xSinesio, F., Cammareri, M., Moneta, E., Navez, B., Peparaio, M., Causse, M., & Grandillo, S. (2010). Sensory Quality of Fresh French and Dutch Market Tomatoes: A Preference Mapping Study with Italian Consumers. Journal of Food Science, 75(1), S55-S67. doi:10.1111/j.1750-3841.2009.01424.xSpeirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237xTandon, K. S., Baldwin, E. A., Scott, J. W., & Shewfelt, R. L. (2003). Linking Sensory Descriptors to Volatile and Nonvolatile Components of Fresh Tomato Flavor. Journal of Food Science, 68(7), 2366-2371. doi:10.1111/j.1365-2621.2003.tb05774.xTieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660-2669. doi:10.1016/j.phytochem.2007.06.005Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292. doi:10.1073/pnas.0602469103Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.xTikunov, Y. M., de Vos, R. C. H., González Paramás, A. M., Hall, R. D., & Bovy, A. G. (2009). A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach. Plant Physiology, 152(1), 55-70. doi:10.1104/pp.109.146670Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231Tzin, V., Rogachev, I., Meir, S., Moyal Ben Zvi, M., Masci, T., Vainstein, A., … Galili, G. (2013). Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. Journal of Experimental Botany, 64(14), 4441-4452. doi:10.1093/jxb/ert250Ursem, R., Tikunov, Y., Bovy, A., van Berloo, R., & van Eeuwijk, F. (2008). A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 161(1-2), 181-193. doi:10.1007/s10681-008-9672-yVancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., & Sanchez-Serrano, J. J. (2001). Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences, 98(14), 8139-8144. doi:10.1073/pnas.141079498Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086Zhang, B., Chen, K., Bowen, J., Allan, A., Espley, R., Karunairetnam, S., & Ferguson, I. (2006). Differential expression within the LOX gene family in ripening kiwifruit. Journal of Experimental Botany, 57(14), 3825-3836. doi:10.1093/jxb/erl151Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.18831

    Tomato (Solanum lycopersicum L.) in the service of biotechnology

    Full text link
    corecore