44 research outputs found

    A Statistical Semi-Empirical Model: Satellite galaxies in Groups and Clusters

    Full text link
    We present STEEL a STatistical sEmi-Empirical modeL designed to probe the distribution of satellite galaxies in groups and clusters. Our fast statistical methodology relies on tracing the abundances of central and satellite haloes via their mass functions at all cosmic epochs with virtually no limitation on cosmic volume and mass resolution. From mean halo accretion histories and subhalo mass functions the satellite mass function is progressively built in time via abundance matching techniques constrained by number densities of centrals in the local Universe. By enforcing dynamical merging timescales as predicted by high-resolution N-body simulations, we obtain satellite distributions as a function of stellar mass and halo mass consistent with current data. We show that stellar stripping, star formation, and quenching play all a secondary role in setting the number densities of massive satellites above M3×1010MM_*\gtrsim 3\times 10^{10}\, M_{\odot}. We further show that observed star formation rates used in our empirical model over predict low-mass satellites below M3×1010MM_*\lesssim 3\times 10^{10}\, M_{\odot}, whereas, star formation rates derived from a continuity equation approach yield the correct abundances similar to previous results for centrals.Comment: 21 pages, 17 Figures. MNRAS, in pres

    Outflows in the Gaseous Discs of Active Galaxies and their impact on Black Hole Scaling Relations

    Full text link
    To tackle the still unsolved and fundamental problem of the role of Active Galactic Nuclei (AGN) feedback in shaping galaxies, in this work we implement a new physical treatment of AGN-driven winds into our semi-analytic model of galaxy formation. To each galaxy in our model, we associate solutions for the outflow expansion and the mass outflow rates in different directions, depending on the AGN luminosity, on the circular velocity of the host halo, and on gas content of the considered galaxy. To each galaxy we also assign an effective radius derived from energy conservation during merger events, and a stellar velocity dispersion self-consistently computed via Jeans modelling. We derive all the main scaling relations between Black hole (BH) mass and total/bulge stellar mass, velocity dispersion, host halo dark matter mass, and star formation efficiency. We find that our improved AGN feedback mostly controls the dispersion around the relations but plays a subdominant role in shaping slopes and/or normalizations of the scaling relations. Including possible limited-resolution selection biases in the model provides better agreement with the available data. The model does not point to any more fundamental galactic property linked to BH mass, with velocity dispersion playing a similar role with respect to stellar mass, in tension with present data. In line with other independent studies carried out on comprehensive semi-analytic and hydrodynamic galaxy-BH evolution models, our current results signal either an inadequacy of present cosmological models of galaxy formation in fully reproducing the local scaling relations, in terms of both shape and residuals, and/or point to an incompleteness issue affecting the local sample of dynamically-measured BHs.Comment: 21 pages, accepted for publications in Astronomy & Astrophysic

    Efficient training sets for surrogate models of tokamak turbulence with Active Deep Ensembles

    Full text link
    Model-based plasma scenario development lies at the heart of the design and operation of future fusion powerplants. Including turbulent transport in integrated models is essential for delivering a successful roadmap towards operation of ITER and the design of DEMO-class devices. Given the highly iterative nature of integrated models, fast machine-learning-based surrogates of turbulent transport are fundamental to fulfil the pressing need for faster simulations opening up pulse design, optimization, and flight simulator applications. A significant bottleneck is the generation of suitably large training datasets covering a large volume in parameter space, which can be prohibitively expensive to obtain for higher fidelity codes. In this work, we propose ADEPT (Active Deep Ensembles for Plasma Turbulence), a physics-informed, two-stage Active Learning strategy to ease this challenge. Active Learning queries a given model by means of an acquisition function that identifies regions where additional data would improve the surrogate model. We provide a benchmark study using available data from the literature for the QuaLiKiz quasilinear transport model. We demonstrate quantitatively that the physics-informed nature of the proposed workflow reduces the need to perform simulations in stable regions of the parameter space, resulting in significantly improved data efficiency. We show an up to a factor of 20 reduction in training dataset size needed to achieve the same performance as random sampling. We then validate the surrogates on multichannel integrated modelling of ITG-dominated JET scenarios and demonstrate that they recover the performance of QuaLiKiz to better than 10\%. This matches the performance obtained in previous work, but with two orders of magnitude fewer training data points.Comment: Submitted to Nuclear Fusion. Comments welcom

    The evolution of compact massive quiescent and star-forming galaxies derived from the Re–Rh and Mstar–Mh relations

    Get PDF
    The mean size (effective radius Re) of massive galaxies (MGs; Mstar > 1011.2M⊙) is observed to increase steadily with cosmic time. It is still unclear whether this trend originates from the size growth of individual galaxies (via, e.g. mergers and/or AGN feedback) or from the inclusion of larger galaxies entering the selection at later epochs (progenitor bias). We here build a data-driven, flexible theoretical framework to probe the structural evolution of MGs. We assign galaxies to dark matter haloes via stellar mass–halo mass (SMHM) relations with varying high-mass slopes and scatters σSMHM in stellar mass at fixed halo mass, and assign sizes to galaxies using an empirically motivated, constant and linear relationship between Re and the host dark matter halo radius Rh. We find that (1) the fast mean size growth of MGs is well reproduced independently of the shape of the input SMHM relation; (2) the numbers of compact MGs grow steadily until z ≳ 2 and fall off at lower redshifts, suggesting a lesser role of progenitor bias at later epochs; (3) a time-independent scatter σSMHM is consistent with a scenario in which compact star-forming MGs transition into quiescent MGs in a few 108 yr with a negligible structural evolution during the compact phase, while a scatter increasing at high redshift implies significant size growth during the star-forming phase. A robust measurement of the size function of MGs at high redshift can set strong constraints on the scatter of the SMHM relation and, by extension, on models of galaxy evolution

    The main sequence at z ∼ 1.3 contains a sizable fraction of galaxies with compact star formation sizes: a new population of early post-starbursts?

    Get PDF
    Atacama Large Millimeter/submillimeter Array (ALMA) measurements for 93 Herschel-selected galaxies at 1.1 ≤ z ≤ 1.7 in COSMOS reveal a sizable (>29%) population with compact star formation (SF) sizes, lying on average >×3.6 below the optical stellar mass (M ⋆)─size relation of disks. This sample widely spans the star-forming main sequence (MS), having 108 ≤ M ⋆ ≤ 1011.5 M ☉ and 20 ≤ star formation rate (SFR) ≤ 680 M ☉ yr−1. The 32 size measurements and 61 upper limits are measured on ALMA images that combine observations of CO(5─4), CO(4─3), CO(2─1), and λ obs ∼ 1.1─1.3 mm continuum, all tracing the star-forming molecular gas. These compact galaxies have instead normally extended K band sizes, suggesting strong specific SFR gradients. Compact galaxies comprise the 50 ± 18% of MS galaxies at M ⋆ > 1011 M ☉. This is not expected in standard bimodal scenarios, where MS galaxies are mostly steadily growing extended disks. We suggest that compact MS objects are early post-starburst galaxies in which the merger-driven boost of SF has subsided. They retain their compact SF size until either further gas accretion restores premerger galaxy-wide SF, or until becoming quenched. The fraction of merger-affected SF inside the MS seems thus larger than anticipated and might reach ∼50% at the highest M ⋆. The presence of large galaxies above the MS demonstrates an overall poor correlation between galaxy SF size and specific SFR

    LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies through the [O iii] – radio connection

    Get PDF
    What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H II and absorption line galaxies (ALGs)] galaxies. Using [O III] luminosity (⁠L[OIII]⁠) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical–radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O III] luminosity. Below MBH ∼ 106.5 M⊙, stellar processes from non-jetted H II galaxies dominate with Lcore∝M0.61±0.33BH and Lcore∝L0.79±0.30[OIII]⁠. Above MBH ∼ 106.5 M⊙, accretion-driven processes dominate with Lcore∝M1.5−1.65BH and Lcore∝L0.99−1.31[OIII] for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H II galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5GHz≳1019.8 W Hz−1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (⁠m˙⁠). Radio-quiet and radio-loud LINERs are powered by low-m˙ discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m˙ discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H II galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion–ejection states of active BHs determine the radio production and the optical classification of local active galaxies

    The MAGPI Survey -- science goals, design, observing strategy, early results and theoretical framework

    Get PDF
    © The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1017/pasa.2021.25We present an overview of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, a Large Program on ESO/VLT. MAGPI is designed to study the physical drivers of galaxy transformation at a lookback time of 3-4 Gyr, during which the dynamical, morphological, and chemical properties of galaxies are predicted to evolve significantly. The survey uses new medium-deep adaptive optics aided MUSE observations of fields selected from the GAMA survey, providing a wealth of publicly available ancillary multi-wavelength data. With these data, MAGPI will map the kinematic and chemical properties of stars and ionised gas for a sample of 60 massive (> 7 x 10^10 M_Sun) central galaxies at 0.25 < zPeer reviewe

    The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    Get PDF
    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size Re, on the ratio v/\u3c3 between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j 17of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z 3c 1-2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities

    LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies through the [O III] - radio connection

    Get PDF
    What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H II and absorption line galaxies (ALGs)] galaxies. Using [O III] luminosity (⁠L[OIII]⁠) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical–radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O III] luminosity. Below MBH ∼ 106.5 M⊙, stellar processes from non-jetted H II galaxies dominate with Lcore∝M0.61±0.33BH and Lcore∝L0.79±0.30[OIII]⁠. Above MBH ∼ 106.5 M⊙, accretion-driven processes dominate with Lcore∝M1.5−1.65BH and Lcore∝L0.99−1.31[OIII] for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H II galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5GHz≳1019.8 W Hz−1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (⁠m˙⁠). Radio-quiet and radio-loud LINERs are powered by low-m˙ discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m˙ discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H II galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion–ejection states of active BHs determine the radio production and the optical classification of local active galaxies

    The anterior pituitary gland as a possible site of action of kainic acid

    No full text
    The purpose of the present study was to analyze the direct effect of kainic acid (KA), an agonist of L-Glutamate, on the secretion of LH and FSH from anterior pituitary (AP) of male rats perifused in vitro. At low concentrations (1 microM), KA was able to stimulate the release of both gonadotropins from AP of 50-day-old male rats, but the response to subsequent stimuli was markedly impaired. This, however, was not due to a neurotoxic action of KA, but seemed rather suggestive of a down-regulation or desensitization of KA receptors. The stimulatory action of KA on LH and FSH secretion was age-dependent, since the agonist was completely ineffective on the AP of 75-day- and 18-month-old male rats. DNQX (6,7-dinitroquinoxaline-2,3-dione), a specific antagonist of the KA receptor subtype, was able to block the KA-induced gonadotropin secretion; similarly, AP-5 (2-amino-5-phosphonovalerate), a competitive NMDA receptor antagonist, prevented the stimulatory effect of KA on LH and FSH release. An interaction between the opiatergic and the excitatory aminoacid (EAA) systems emerged from the observation that pulses of KA applied to AP of 50-day-old male rats during a continuous perifusion with a medium containing morphine (5 microM) failed to increase gonadotropin secretion. These results indicate that KA can, at low concentrations, directly stimulate LH and FSH secretion by acting at AP level; this effect disappears with progression of age, and might be exerted both through NMDA and non-NMDA receptor subtypes. Finally, the results provide evidence that opioids and excitatory aminoacids might influence gonadotropin secretion from AP by acting in opposite directions
    corecore