959 research outputs found

    Measurement of ¯B0-B0 and ¯B0s - B0s production asymmetries in 7TeV pp collisions

    Get PDF
    The measurements of the ¯B0-B0 and ¯B0s - B0s production asymmetries, AP(B0) and AP(B0s) performed by LHCb, using pp collisions data at the centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 1 fb−1, are reported. Integrating over pT and η, in the ranges 4 < pT < 30 GeV/c and 2.5 < η < 4.5, the production asymmetries are found to be AP(B0) = −0.35 ± 0.76 (stat) ± 0.28 (syst)% and AP(B0s) = 1.09 ± 2.61 (stat) ± 0.61 (syst)%

    Measurement of direct CP violation in the B0s → K−π+ decay

    Get PDF
    In this paper the measurement of direct CP violation in B0s → K−π+ and B0 → K+π− decays performed by the LHCb experiment is reviewed. Using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected by LHCb at a center-of-mass energy of 7TeV, LHCb measured: ACP (B0s → K−π+) = 0.27 ± 0.04 (stat) ± 0.01 (syst). Furthermore, LHCb provided an improved determination of direct CP violation in B0 → K+π− decays ACP (B0 → K+π−) = −0.080 ± 0.007 (stat) ± 0.003 (syst)

    In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers

    Get PDF
    Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb′−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb′−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb′−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Measurement of the Bs0→J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb−13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm

    Measurement of the mass and lifetime of the Ωb−\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb−1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 Ωb−→Ωc0π−\Omega_b^-\to\Omega_c^0\pi^-, Ωc0→pK−K−π+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the Ξb−→Ξc0π−\Xi_b^-\to\Xi_c^0\pi^-, Ξc0→pK−K−π+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb−\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb−\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩb−−mΞb−m_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb−\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Model-independent evidence for J/ψpJ/\psi p contributions to Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays

    Get PDF
    The data sample of Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays acquired with the LHCb detector from 7 and 8~TeV pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}, is inspected for the presence of J/ψpJ/\psi p or J/ψK−J/\psi K^- contributions with minimal assumptions about K−pK^- p contributions. It is demonstrated at more than 9 standard deviations that Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays cannot be described with K−pK^- p contributions alone, and that J/ψpJ/\psi p contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for Pc+→J/ψpP_c^+\to J/\psi p charmonium-pentaquark states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the end

    Observation of J/ψpJ/\psi p resonances consistent with pentaquark states in Λb0→J/ψK−p{\Lambda_b^0\to J/\psi K^-p} decays

    Get PDF
    Observations of exotic structures in the J/ψpJ/\psi p channel, that we refer to as pentaquark-charmonium states, in Λb0→J/ψK−p\Lambda_b^0\to J/\psi K^- p decays are presented. The data sample corresponds to an integrated luminosity of 3/fb acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψpJ/\psi p mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±294380\pm 8\pm 29 MeV and a width of 205±18±86205\pm 18\pm 86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.54449.8\pm 1.7\pm 2.5 MeV and a width of 39±5±1939\pm 5\pm 19 MeV. The preferred JPJ^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after referee's comments, now 19 figure

    Constraints on the unitarity triangle angle γ\gamma from Dalitz plot analysis of B0→DK+π−B^0 \to D K^+ \pi^- decays

    Get PDF
    The first study is presented of CP violation with an amplitude analysis of the Dalitz plot of B0→DK+π−B^0 \to D K^+ \pi^- decays, with D→K+π−D \to K^+ \pi^-, K+K−K^+ K^- and π+π−\pi^+ \pi^-. The analysis is based on a data sample corresponding to 3.0 fb−13.0\,{\rm fb}^{-1} of pppp collisions collected with the LHCb detector. No significant CP violation effect is seen, and constraints are placed on the angle γ\gamma of the unitarity triangle formed from elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated with the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay are determined for the first time. These measurements can be used to improve the sensitivity to γ\gamma of existing and future studies of the B0→DK∗(892)0B^0 \to D K^*(892)^0 decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html; updated to correct figure 9 (numerical results unchanged
    • …
    corecore