28 research outputs found

    Molecular analysis of lungs from pigs immunized with a mutant transferrin binding protein B-based vaccine and challenged with Haemophilus parasuis

    Get PDF
    38 p.The molecular analysis of pigs vaccinated with a mutant transferrin-binding protein B (Y167A) from Haemophilus parasuis was compared with that performed for unvaccinated challenged (UNCH) and unvaccinated unchallenged (UNUN) pigs. Microarray analysis revealed that UNCH group showed the most distinct expression profile for immune response genes, mainly for those genes involved in inflammation or immune cell trafficking. This fact was confirmed by real-time PCR, in which the greatest level of differential expression from this group were CD14, CD163, IL-8 and IL-12. In Y167A group, overexpressed genes included MAP3K8, CD14, IL-12 and CD163. Proteomics revealed that collagen -1 and peroxiredoxins 2 and 6 were overexpressed in Y167A pigs. Our study reveals new data on genes and proteins involved in H. parasuis infection and several candidates of resistance to infection that are induced by Y167A vaccine. The expression of proinflammatory molecules from Y176A pigs is similar to their expression in UNUN pigsS

    A unifying hypothesis for PNMZL and PTFL: morphological variants with a common molecular profile

    Full text link
    Pediatric nodal marginal zone lymphoma (PNMZL) is an uncommon B-cell neoplasm affecting mainly male children and young adults. This indolent lymphoma has distinct characteristics that differ from those of conventional nodal marginal zone lymphoma (NMZL). Clinically, it exhibits overlapping features with pediatric-type follicular lymphoma (PTFL). To explore the differences between PNMZL and adult NMZL and its relationship to PTFL, a series of 45 PNMZL cases were characterized morphologically and genetically by using an integrated approach; this approach included whole-exome sequencing in a subset of cases, targeted next-generation sequencing, and copy number and DNA methylation arrays. Fourteen cases (31%) were diagnosed as PNMZL, and 31 cases (69%) showed overlapping histologic features between PNMZL and PTFL, including a minor component of residual serpiginous germinal centers reminiscent of PTFL and a dominant interfollicular B-cell component characteristic of PNMZL. All cases displayed low genomic complexity (1.2 alterations per case) with recurrent 1p36/TNFRSF14 copy number-neutral loss of heterozygosity alterations and copy number loss (11%). Similar to PTFL, the most frequently mutated genes in PNMZL were MAP2K1 (42%), TNFRSF14 (36%), and IRF8 (34%). DNA methylation analysis revealed no major differences between PTFL and PNMZL. Genetic alterations typically seen in conventional NMZL were absent in PNMZL. In summary, overlapping clinical, morphologic, and molecular findings (including low genetic complexity; recurrent alterations in MAP2K1, TNFRSF14, and IRF8; and similar methylation profiles) indicate that PNMZL and PTFL are likely part of a single disease with variation in the histologic spectrum. The term "pediatric-type follicular lymphoma with and without marginal zone differentiation" is suggested.Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved

    Triggering Mechanisms of Tsunamis in the Gulf of Cadiz and the Alboran Sea: An Overview

    Get PDF
    The Gulf of Cadiz and the Alboran Sea are characterized by tectonic activity due to oblique convergence at the boundary between the Eurasian and Nubian plates. This activity has favoured a variety of tsunamigenic sources: basically, seismogenic faults and submarine landslides. The main tsunamigenic faults in the Gulf of Cadiz would comprise the thrust systems of Gorringe Ridge, Marquês de Pombal, São Vicente Canyon, and Horseshoe faults with a high susceptibility; meanwhile in the Alboran Sea would be the thrust system of the northern Alboran Ridge with high susceptibility, and the thrust systems of north Xauen and Adra margin, the transpressive segment of Al Idrissi fault, and the Yusuf-Habibas and Averroes faults, with moderate to high susceptibility. The areas with the greatest potential to generate tsunamigenic submarine landslides are in the Gulf of Cadiz, the São Vicente Canyon, Hirondelle Seamount, and Gorringe Ridge; and in the Alboran Sea are the southern and northern flanks of Alboran Ridge. Both sources are likely to generate destructive tsunamis in the Gulf of Cadiz, given its history of bigger earthquakes (>7 Mw) and larger landslides. To fully assess tsunamigenic sources, further work needs to be performed. In the case of seismogenic faults, research focuses on geometry, offsets, timing, paleoearthquakes, and recurrence, and in landslides on early post-failure evolution, age, events, and recurrence. In situ measurements, paleotsunami records, and long-term monitoring, in addition to major modelling developments, will be also necessary.Versión del edito

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: the case of the Gulf of Vera (Western Mediterranean)

    Get PDF
    We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The inden tation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plain

    Intraplate stress state from finite element modelling: The southern border of the Spanish Central System

    Get PDF
    An elastic finite element approach has been used with the dual aim of determining the most appropriate reference state of stress, namely a uniaxial strain state or a lithostatic state, and re fining the understanding of the Iberian intraplate stresses. A cross-section model with an average crustal rheology and a flat topography has been analysed first in order to evaluate the in fluence of boundary conditions and rheological properties in the reference and tectonic stress states. The uniaxial and lithostatic states are obtained by including the overburden weight and a compressive horizontal load, which equals the uniaxial and lithostatic stress respectively, and provided that Poisson's ratio equals ~0.5 in the lithostatic state. On the other hand, a tectonic state with a σHNσV regime is reproduced by adding a horizontal constant load. Subsequently, constraints on the magnitude of the predicted Cenozoic stresses along a NW–SE cross-section in the southern border of the Spanish Central System (in the Variscan granitic basement of El Berrocal) have been estimated incorporating the topographic loading, lithological variations and the most recent far tectonic stresses. The deep geological structure has been established from gravity modelling and geological data. To simulate the active strike-slip to uniaxial extension regimes in the interior of Iberian Peninsula, a lithostatic initial state has to be considered and a tectonic load in the range of 15–20 MPa has to be applied. The gradient of maximum horizontal stress originated under these conditions is in the range of–350 MPa km− 1. These results are in accordance with the estimated intraplate tectonic stress, the force along the convergent plate boundary of Eurasia–Africa, the lithospheric strength of Iberia, and the direct measurements of stresses
    corecore