59 research outputs found

    Cloud based Distributed Denial of Service Alleviation System

    Get PDF

    Economic Denial of Sustainability Attacks Mitigation in the Cloud

    Get PDF
    Cyber security is one of the most attention seeking issues with the increasing advancement of technology specifically when the network availability is threaten by attacks such as Denial of Service attacks (DoS), Distributed DoS attacks (DDoS), and Economic Denial of Sustainability (EDoS). The loss of the availability and accessibility of cloud services have greater impacts than those in the traditional enterprises networks. This paper introduces a new technique to mitigate the impacts of attacks which is called Enhanced DDoS-Mitigation System (Enhanced DDoS-MS) that helps in overcoming the determined security gap. The proposed technique is evaluated experimentally and the result shows that the proposed method adds lower delays as a result of the enhanced security. The paper also suggests some future directions to improve the proposed framework

    Climate and land-use as the main drivers of recent environmental change in a mid-altitude mountain lake, Romanian Carpathians

    Get PDF
    Recent decades have been marked by unprecendented environmental changes which threaten the integrity of freshwater systems and their ecological value. Although most of these changes can be attributed to human activities, disentagling natural and anthropogenic drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude site in the Carpathian Mts (Romania) were investigated following high-resolution sedimentological, geochemical, environmental magnetic and diatom analyses supported by historical cartographic and documentary evidence. Our results suggest that between 1920 and 1960 the study area experienced no significant anthropogenic impact. An excellent correspondence is observed between lake proxy responses (e.g., growth of submerged macrophytes, high detrital input, shifts in diatom assemblages) and parameters tracking natural hydroclimate variability (e.g., temperature, NAO). This highlights a dominant natural hydroclimatic control on the lacustrine system. From 1960 however, the depositional regime shifted markedly from laminated to homogenous clays; since then geochemical and magnetic data document a trend of significant (and on-going) subsurface erosion across the catchment. This is paralleled by a shift in lake ecosystem conditions denoting a strong response to an intensified anthropogenic impact, mainly through forestry. An increase in detrital input and marked changes in the diatom community are observed over the last three decades, alongside accelerated sedimentation rates following enhanced grazing and deforestation in the catchment. Recent shifts in diatom assemblages may also reflect forcing from atmospheric nitrogen (N) deposition, a key recent drive of diatom community turnover in mountain lakes. In general, enhanced human pressure alongside intermittent hydroclimate forcing drastically altered the landscape around Lake Ighiel and thus, the sedimentation regime and the ecosystem’s health. However, paleoenvironmental signals tracking natural hydroclimate variability are also clearly discernible in the proxy data. Our work illustrates the complex link between the drivers of catchment-scale impacts on one hand, and lake proxy responses on the other, highlighting the importance of an integrated historical and palaeolimnological approach to better assess lake system changes

    Stratospheric contraction caused by increasing greenhouse gases

    Get PDF
    Rising emissions of anthropogenic greenhouse gases (GHG) have led to tropospheric warming and stratospheric cooling over recent decades. As a thermodynamic consequence, the troposphere has expanded and the rise of the tropopause, the boundary between the troposphere and stratosphere, has been suggested as one of the most robust fingerprints of anthropogenic climate change. Conversely, at altitudes above ∌55 km (in the mesosphere and thermosphere) observational and modeling evidence indicates a downward shift of the height of pressure levels or decreasing density at fixed altitudes. The layer in between, the stratosphere, has not been studied extensively with respect to changes of its global structure. Here we show that this atmospheric layer has contracted substantially over the last decades, and that the main driver for this are increasing concentrations of GHG. Using data from coupled chemistry-climate models we show that this trend will continue and the mean climatological thickness of the stratosphere will decrease by 1.3 km following representative concentration pathway 6.0 by 2080. We also demonstrate that the stratospheric contraction is not only a response to cooling, as changes in both tropopause and stratopause pressure contribute. Moreover, its short emergence time (less than 15 years) makes it a novel and independent indicator of GHG induced climate change

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Towards On-Board Hyperspectral Satellite Image Segmentation: Understanding Robustness of Deep Learning through Simulating Acquisition Conditions

    No full text
    Although hyperspectral images capture very detailed information about the scanned objects, their efficient analysis, transfer, and storage are still important practical challenges due to their large volume. Classifying and segmenting such imagery are the pivotal steps in virtually all applications, hence developing new techniques for these tasks is a vital research area. Here, deep learning has established the current state of the art. However, deploying large-capacity deep models on-board an Earth observation satellite poses additional technological challenges concerned with their memory footprints, energy consumption requirements, and robustness against varying-quality image data, with the last problem being under-researched. In this paper, we tackle this issue, and propose a set of simulation scenarios that reflect a range of atmospheric conditions and noise contamination that may ultimately happen on-board an imaging satellite. We verify their impact on the generalization capabilities of spectral and spectral-spatial convolutional neural networks for hyperspectral image segmentation. Our experimental analysis, coupled with various visualizations, sheds more light on the robustness of the deep models and indicate that specific noise distributions can significantly deteriorate their performance. Additionally, we show that simulating atmospheric conditions is key to obtaining the learners that generalize well over image data acquired in different imaging settings
    • 

    corecore