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Abstract
Rising emissions of anthropogenic greenhouse gases (GHG) have led to tropospheric warming and
stratospheric cooling over recent decades. As a thermodynamic consequence, the troposphere has
expanded and the rise of the tropopause, the boundary between the troposphere and stratosphere,
has been suggested as one of the most robust fingerprints of anthropogenic climate change.
Conversely, at altitudes above∼55 km (in the mesosphere and thermosphere) observational and
modeling evidence indicates a downward shift of the height of pressure levels or decreasing density
at fixed altitudes. The layer in between, the stratosphere, has not been studied extensively with
respect to changes of its global structure. Here we show that this atmospheric layer has contracted
substantially over the last decades, and that the main driver for this are increasing concentrations
of GHG. Using data from coupled chemistry-climate models we show that this trend will continue
and the mean climatological thickness of the stratosphere will decrease by 1.3 km following
representative concentration pathway 6.0 by 2080. We also demonstrate that the stratospheric
contraction is not only a response to cooling, as changes in both tropopause and stratopause
pressure contribute. Moreover, its short emergence time (less than 15 years) makes it a novel and
independent indicator of GHG induced climate change.

1. Introduction

Over the last decades increasing concentrations of
greenhouse gases (GHG) have substantially affected
the Earth’s radiative balance, leading to pronounced
warming of the troposphere and cooling of the stra-
tosphere (Stocker et al 2013). The thermal expansion
of the troposphere and the associated increase in tro-
popause height have been proposed as robust fin-
gerprints of anthropogenic climate change based on
multiple observational and model evidence (Santer
et al 2003, Seidel and Randel 2006, Lorenz and

DeWeaver 2007, Heus et al 2009). At the same time,
in the mesosphere and above, a downward shift of
the height of pressure levels or decreasing density
at fixed altitudes were documented (Lubken et al
2013, Jacobi 2014, Stober et al 2014, Emmert 2015,
Lima et al 2015, Peters and Entzian 2015, Solomon
et al 2018). While a rich body of literature has docu-
mented the expansion of the troposphere (Añel et al
2006, Gettelman et al 2009, Eyring et al 2010, Kim
et al 2013, Vallis et al 2015) much less attention has
been given to the changing global structure of the
stratosphere. The latter is not only the home of the
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ozone layer, but also a radiatively important region
in terms of other GHG (e.g. N2O, CO2, H2O, CH4)
and dynamically coupled with the troposphere (Bald-
win and Dunkerton 2001, Gerber 2012, Kidston et al
2015). Therefore, the structure of the stratosphere is
crucial to correctly comprehend atmospheric dynam-
ics and tracer transport, particularly when this atmo-
spheric layer should be disturbed through possible
sulfate geoengineering experiments where the alti-
tude of injection plays a key role (Tilmes et al 2018,
Visioni et al 2021). Compared to the troposphere,
where considerable multi-instrumental global obser-
vational data are available, homogenous global obser-
vations spanning the full stratospheric vertical extent
and the stratopause region (located around an alti-
tude of 50 km) are sparse and/or of limited tem-
poral duration (Clancy and Rusch 1990, Russell et al
1993, Dunkerton et al 1998, Remsberg et al 2008,
Schwartz et al 2008, Remsberg 2009, Hauchecorne
et al 2019). As the stratosphere has substantially
cooled in the last several decades (Randel et al 2016,
Steiner et al 2020), including a near global cool-
ing in the stratopause region (Remsberg 2019), one
might expect accompanying thickness changes (of
the stratosphere) from simple thermodynamic con-
siderations (Akmaev, 2012, Rishbeth 1990, Akmaev
2002, Akmaev et al 2006, Yuan et al 2019). Such,
decreasing stratospheric thickness trend (contrac-
tion) has so far, however, been reported only locally
and over a short observational time span (Ramesh
and Sridharan 2018). Here we use data from state-of-
the-art coupled chemistry-climate models (CCMs)
to address, whether stratospheric contraction occurs
and will occur on global scale, and if so, to which
extent past contraction has been driven by changes
in GHG or ozone depletion (Akmaev, 2012, Rieder
et al 2014), given that both are main drivers of strato-
spheric temperature change.

2. Data andmethods

2.1. Data
We use output of an ensemble of chemistry-climate
models, which all contributed to the Chemistry Cli-
mate Model Initiative (CCMI) (Morgenstern et al
2017). From the set of CCMI scenarios we use an
all forcing scenario as baseline, and two sensitivity
experiments, one with fixed GHG, the other one with
fixed ozone depleting substances (ODS). Through-
out the manuscript we refer to these as AllForcings,
FixedGHG and FixedODS and within the framework
of CCMI these experiments are referred to as REF-
C2, SEN-C2fGHG and SEN-C2fODS, respectively.
The AllForcings simulations follow the A1 scenario
for ozone-depleting substances (WMO 2011) and the
RCP 6.0 scenario for other GHG, tropospheric ozone
precursors, and aerosol precursor emissions (Mein-
shausen et al 2011). Anthropogenic emissions are
based on MACCity (Granier et al 2011) until 2000,

followed by RCP 6.0 emissions. To stabilize the radi-
ative forcing of the RCP 6.0 scenario at 6 W m−2

after 2100, an emission reduction of about 50%below
baseline is applied after 2080. This way, for example
CO2 stabilizes at 752 ppm in the 22nd century,
which rests on the assumption that stringent post-
2100 emission reductions are feasible (Meinshausen
et al 2011). In these simulations some models (MRI,
NIWA-UKCA, HadGEM, GFDL, CESM, CHASER,
andWACCM) have coupled an interactive ocean and
sea ice module for atmosphere-ocean interactions,
while other models impose sea surface temperatures
and sea ice concentrations, using a variety of dif-
ferent climate model data sets for this purpose (e.g.
HadISST1 or HadGEM2 data; for details see table
S1 in Morgenstern et al 2017). The FixedGHG and
FixedODS experiments are sensitivity simulations of
the same base configuration as the AllForcings sim-
ulations but with GHG or ODS fixed at their 1960
level, and sea surface and sea ice conditions pre-
scribed as the 1955–1964 average (where these con-
ditions are imposed). Note, not all CCMI models
which have delivered AllForcings integrations have
also delivered the FixedGHG and FixedODS sensitiv-
ity experiments (see supplemental table S1 (available
online at stacks.iop.org/ERL/16/064038/mmedia)).

Along with the CCM model output we analyze
three widely used reanalyses. The presented tropo-
pause height analysis for 1980–2018 is based on three
reanalysis products: ERA-5 (Hersbach et al 2020, C3S
2017), JRA-55 (Kobayashi et al 2015) and MERRA2
(Gelaro et al 2017). The analysis of geopotential
height trends for 1960–2018 is based on JRA-55. For
comparison of model results with reanalyses we focus
on the 1980–2018 time period. For the analysis of the
AllForcings, FixedODS and FixedGHG experiments
we examine the long-term period 1960–2080, as well
as the two subperiods 1960–1999 and 2000–2080,
with the year 2000 chosen as the breakpoint given
the reversal of the ODS trend around the turn of the
century.

2.2. Metrics of tropopause and stratopause height
The tropopause and stratopause heights have been
identified (in geopotential coordinates) for each indi-
vidual model participating in CCMI, for the AllFor-
cings, FixedODS and FixedGHG experiments (Eyring
et al 2013). If multiple ensemble members have
been available for an individual model, only the first
ensemble member has been used in our study (to
ensure equal weighting of participating models). We
have interpolated the data into a common vertical res-
olution of 100 m. The tropopause height has been
determined as the first lapse rate tropopause using
the WMO definition (WMO 1957): the tropopause
is defined as the lowest level at which the lapse rate
decreases to 2 ◦Ckm−1 or less, provided that the aver-
age lapse rate between this level and all higher levels
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within 2 km does not exceed 2 ◦C km−1 . We use geo-
potential height as a proxy for geometric altitude as
in a geometric coordinate system the net tropopause
trend consists of the trend in geopotential height of
pressure levels and the trend relative to the pres-
sure levels. The stratopause height has been calcu-
lated as the level of maximum temperature between
40 and 65 km altitude. Stratospheric thickness has
been calculated as the difference between the tropo-
pause height and stratopause height. Ensemble mean
values are calculated as arithmetic mean across the
available model integrations per experiment. Trends
for all variables considered have been estimated (from
yearly time series calculated from monthly means
given by the original data) by the Theil–Sen estim-
ator and their significance at the 95%-level has been
determined using the Mann–Kendall test. If outliers
are displayed (such as in figure 2) they are defined
as exceeding 1.5 times the inter-quartile range. The
emergence time of the stratospheric thickness trend
was calculated as the minimum length of the strato-
spheric thickness time series where a statistically sig-
nificant trend was detected.

2.3. Determining the contribution of changes in
temperature, tropopause pressure and stratopause
pressure to changes in stratospheric thickness
The contribution of changes in temperature and tro-
popause and stratopause height to the net strato-
spheric contraction is evaluated based on the hyp-
sometric equation, which in the form below yields
an approximation for the stratospheric thickness at a
leading order:

H̄strato (t) =
RT̄(t)

g
ln

(
ptp (t)

psp (t)

)
. (1)

Here, H̄strato is the globalmean stratospheric thickness
estimate, T̄ is the global mean stratospheric temper-
ature and ptp and psp are the global mean tropopause
and stratopause pressures, respectively. g denotes the
acceleration of gravity (9.806 m s−2) and R is the dry
air gas constant (287.058 J kg−1 K−1).

The relative contributions to the global mean
stratospheric thickness change are derived from the
global mean stratospheric temperature and pressure
of the pauses by differentiating equation (1) to obtain:

δHstrato (t) =
R

g
ln

(
ptp (t)

psp (t)

)
δT̄(t)+

RT̄(t)

gptp (t)
δptp

− RT̄(t)

gpsp (t)
δpsp (t) , (2)

where δ is a simple linear operator chosen as a rate
of change per year (δX(t) = X(t+ 1)−X(t)) in our
case. The individual contributions of changes in tem-
perature, tropopause pressure and stratopause pres-
sure to the change in stratospheric thickness are

defined as an average contribution from correspond-
ing terms in equation (2) over a time period in consid-
eration. The hypsometric estimate approximates the
evolution of stratospheric thickness very accurately
(see figure S1) justifying the analysis of stratospheric
contraction on a global scale.

3. Results

3.1. Stratospheric contraction
For the height evolution of the stratospheric lower
bound, the tropopause, CCMs are in excellent agree-
ment with observations. We illustrate this for the
recent past (1980–2018) in figure 1(a) by contrasting
rising trends of the annual mean tropopause height
simulated by the CCMI models with those of three
widely used reanalyses (MERRA-2, ERA-5, JRA55;
see methods). The tropopause height in the reana-
lyses fall well within the range simulated by CCMs.
Looking into the future, we here confine ourselves to
the year 2080, as GHG concentrations change non-
monotonically after 2080 for the AllForcings scen-
ario. Over the entire 1960–2080 period a mono-
tonic increase in the tropopause height is clearly seen
(figure 1(b)). From the tropopause we now exam-
ine higher levels. Unfortunately, a clean analysis com-
parable to the troposphere is not feasible for the
stratosphere as at these levels reanalysis data cannot
be considered a pure observational proxy. However,
stratospheric cooling in recent decades is well docu-
mented, and the CCMImodels are in good agreement
with the temperature measurements from satellites
throughout the stratosphere (Randel et al 2017, May-
cock et al 2018), lending confidence that CCMs can
also faithfully simulate other aspects of stratospheric
changes. Notably CCMs indicate a robust decline in
the stratopause height (figure 1(c)), which is projec-
ted to continue over the 21st century (figure 1(d)).
Bounded between the tropopause and stratopause,
and due to their respective rising and falling, the
stratosphere therefore has been experiencing a global
mean net contraction (figure 1(e)). That this contrac-
tion is underway and is projected to continue into
the late 21st century (figure 1(f)) is the key finding
of our paper, a simple fact that, to the best of our
knowledge, has not been reported to date. In quantit-
ative terms, the CCMI AllForcings simulations indic-
ate that the mean climatological thickness of the stra-
tosphere decreases by 1.3 km until 2080 (representing
a 3.7% change from the 1980–2018 mean).

3.2. Anthropogenic forcing
The two likely anthropogenic forcings underlying the
contraction illustrated above are GHG and ODS,
given that there is now a larger body of literature
demonstrating their roles in recent and future trends
in stratospheric temperature, circulation and com-
position (i.e. ozone layer depletion and recovery).
In recent years, it has been shown that a number
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Figure 1. Anomalies (from the 1980–2018 reference period) of the tropopause height (a), (b), stratopause height (c), (d) and the
stratosphere thickness (e), (f) for 1980–2018 (left) and 1960–2080 (right). The solid black line illustrates the mean of all included
CCMI models and the red line represents the mean of the included reanalyses. All model simulations are for the AllForcings
experiment. The shaded areas show the spread (min to max) of the CCMI models.

of climate system trends that have been previously
assumed to be predominantly GHG-induced are, to a
significant extent, driven by ODS (Polvani et al 2020)
or, indirectly, through changes in ozone caused by
ODS (Polvani et al 2011, Rieder et al 2014, Banerjee
et al 2020). However, as far as stratospheric contrac-
tion is concerned, figures 1(b), (d) and (f) shows that
all trends continue monotonically throughout the
20th and 21st century: this suggests that GHGdomin-
ate over ODS, because GHG concentrations are pro-
jected to monotonically increase, whereas ODS con-
centrations peaked in the late 20th century and will
be decreasing in coming decades as a consequence of
the Montreal Protocol (WMO 2018).

To confirm this, we have analyzed the CCMI
simulations with one of these forcings held fixed
(FixedGHG or FixedODS, see methods) along with
the AllForcings simulations. In figure 2 we show

trends in tropopause height (top row), strato-
pause height (middle row) and stratospheric thick-
ness (bottom row) in these three sets of simula-
tions over three different time periods: 1960–2080
(left column), 1960–1999 (middle column) and
2000–2080 (right column). The 1960–1999 period
is of particular interest given the monotonic increase
in both GHG and ODS concentrations during those
decades, and the availability of observational evid-
ence for tropopause height from atmospheric reana-
lyses. Figure 2(a) shows that both increasing GHG
and ODS result in increasing tropopause height.
In the 20th century (panel b) the change resulting
from increasing GHG is about twice the change
attributable to ODS. However, in the 21st century
(panel c), the bulk of tropopause trends is due to
GHG,withODS contributing only a small and oppos-
ite trend as the ozone layer recovers. Consistent
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Figure 2. CCMI model trends (m decade−1) in tropopause height (top row), stratopause height (middle row) and the
stratospheric thickness (bottom row) for the 1960–2080 (left hand column), 1960–1999 (middle column) and 2000–2080
(right hand column) period. The open circles mark the outliers. The numbers on the x axis denote the number of models
included (i.e. models with significant trends).

with this finding, the trend in the FixedODS sim-
ulations is larger than that in AllForcings. Turning
next to stratopause height trends, they are gener-
ally negative (figures 2(d)–(f)). In the 21st cen-
tury, FixedGHG simulations show negligible stra-
topause height trends, while FixedODS simulations
show substantial negative stratopause height trends
(panel f), which are of the same magnitude as in
AllForcings.

Taken together the changes in tropopause and
stratopause height result in a pronounced decrease
in stratospheric thickness, which we can largely
attribute to changes in GHG (figures 2(g)–(i)). In
connection to this, the net stratospheric contrac-
tion is characterized by a short trend emergence
time (less than 15 years, see figure S2). We have
verified that this contraction is largely independ-
ent of temporal or regional subsampling (i.e. global
mean data as well as for latitudinal bands and sea-
sons). The only exception are Southern polar latit-
udes over the 1960–1999 period, when ODS contrib-
ute to stratospheric contraction via radiative cool-
ing accompanying ozone depletion by an amount
comparable to that of GHG (figure S3); this reverses
in the 21st century, as the ozone layer recovers
(figure S4).

Table 1. Contributions to the stratospheric contraction.
Contribution of changes in stratospheric temperature, tropopause
pressure, and stratopause pressure to the change in stratospheric
thickness (derived from the hypsometric equation) expressed as
% over the corresponding time period for the AllForcings
simulation.

Contribution by
changes in 1960–1999 2000–2080

Stratospheric
temperature

83.7% 52.7%

Tropopause pressure 36.9% 25.9%
Stratopause pressure −20.6% 21.4%

3.3. Role of the stratospheric cooling
We next address the questions of whether strato-
spheric contraction is a mere consequence of strato-
spheric cooling, or whether other (possibly dynam-
ical) mechanisms are at play. For this, we separate
the stratospheric thickness changes (by differentiat-
ing the hypsometric equation, see methods) into the
changes in stratospheric temperature and changes in
tropopause or stratopause pressure (table 1). This
separation shows that while the change in temperat-
ure is the dominant contributor, changes in tropo-
pause and stratopause pressure also add significantly
to the net contraction of the stratosphere. The con-
tribution of stratopause pressure to the contraction
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Figure 3. Geopotential height trends (m decade−1) for the CCMI models and the JRA-55 reanalysis. The first three columns from
the left show the multimodel mean trends for the AllForcings, FixedODS and FixedGHG experiments. The white areas represent
statistically insignificant trends. In all panels, the black line below 100 hPa denotes the mean tropopause, and the line around
1 hPa the mean stratopause.

of the stratosphere is of particular note, as it reverses
fromnegative to positive sign between 1960–1999 and
2000–2080. Positive values indicate that the changes
of a particular parameter enhance the contraction,
and negative values reduce it. The reversal from neg-
ative to positive in case of the stratopause pressure
is attributable to the effects of a changing burden in
ODS on ozone, as ODS peak around the year 2000
(WMO 2018). For 1960–2000 the stratopause pres-
sure trend is of opposite sign than the trends of the
other two forcings, thereby reducing the total trend.
Values of the contributions for the FixedGHG and
FixedODS simulations are shown in the supplemental
table 2. We note in passing that the contributions in
the FixedGHG simulations are very large because the
stratospheric thickness trends in these simulations are
near zero (see figure 2) and even a small forcing may
contribute to a change proportionally larger than the
resulting contraction.

3.4. Vertical structure
Finally, we show how the stratospheric contrac-
tion affects the vertical structure of the atmosphere.
Figure 3 illustrates, how the tropospheric expan-
sion marked by positive geopotential height trends
is gradually weakened above the tropopause by the
overlying stratospheric contraction and then over-
come in themid stratosphere, leading to negative geo-
potential height trends at upper levels. The solid lines
in figure 3 show the mean pauses calculated from
the ensemble comprising the respective model and

simulation pairs. For example, the solid lines in 3a
represent the mean tropopause and stratopause cal-
culated as an average of the pauses detected in the
models providing the AllForcings simulation. The
mean pauses are calculated separately for the All-
Forcings, FixedODS and FixedGHG simulations: this
explains the small differences in panels 3a, 3b and 3c.
The FixedGHG simulations demonstrate that ODS
significantly affect the structure of the stratosphere
mainly in the tropics (in the annual mean), where
they cause a nearly uniform shift of the pressure levels,
resulting in a net null effect on stratospheric thickness
(figures 3(c) and (g)). Figure 3 also shows that over
the 1960–1999 period, reanalysis data (figure 3(d))
and model simulations with AllForcings (figure 3(a))
or FixedODS (figure 3(b)) agree well regarding the
latitudinal distribution of geopotential height trends.
The magnitude and latitudinal extent of the upward
shift in the upper troposphere and lower stratosphere,
however, appears to be slightly overestimated by the
models, with the transition from an upward to a
downward shift occurring at lower altitude in reana-
lysis data than in CCMs. For the 2000–2080 period
we find a significant vertical shift also in the polar
regions (figures 3(e)–(f)). This trend is stronger in
the FixedODS simulations (figure 3(f)) thanwhen the
transient evolution ofODS (figure 3(e)) is prescribed.
The most important feature of figure 3, however, is
the indication of an ubiquitous stratospheric contrac-
tion over the 21st century, throughout all latitudes,
and this being caused primarily by increasing GHG.
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4. Summary and conclusions

In summary, we have presented evidence for a
substantial contraction of the stratosphere in recent
decades. As estimated from an ensemble of CCM
simulations, the stratospheric extent has declined by
0.4 km between 1980 and 2018 and models pro-
ject a net contraction of 1.3 km by the year 2080,
corresponding to a 3.7% decline compared to the
1980–2018 mean stratospheric thickness. This neg-
ative trend is monotonic with short emergence time,
as the contraction is driven almost entirely by GHG.
The robustness of this feature is unlikely to be affected
by potential trends in solar forcing, which have an
opposite thermal effect in this atmospheric region
compared to GHG (Rind et al 2008). Our results
indicate that the widely recognized cooling of the
stratosphere while important, is not the sole driver
of the reduced stratospheric extent, with complex
radiative and chemical feedbacks likely at play. As
model projections for the 21st century show that
stratospheric contraction will continue if anthropo-
genic GHG emission trajectories are not reversed,
a detailed understanding and quantification will be
increasingly important, as it will entail decreasing
density at high altitudes. Eichinger and Sacha (2020)
have shown that assuming a constant scale height
in the stratosphere can lead to diagnostic misinter-
pretations of dynamical trends in climate model pro-
jections and Zhou et al (2020) have recently ana-
lyzed the impact of its variations on the period of the
QBO. The contractionmay also contribute to changes
in stratospheric dynamics or in radiative transfer in
the stratosphere (by influencing scale-heights of the
absorbers/emitters), but these impacts are yet to be
determined and quantified. Moreover, it may affect
satellite trajectories, orbital life-times, and retriev-
als (Schroder et al 2007), and, via indirect influ-
ence on ionospheric electron density, the propaga-
tion of radio waves, and eventually the overall per-
formance of theGlobal Positioning System (GPS) and
other space-based navigational systems (Lastovicka
et al 2006).
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