97 research outputs found

    Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water

    No full text
    International audienceTwo synthetic smectites (montmorillonite and beidellite) are studied by a water adsorption technique in order to assess their specific surface areas under atmospheric conditions. A route recently proposed for extracting the thermodynamic data from experimental adsorption isotherms is used. The variation of the specific surface area during water adsorption is obtained, which can be linked to the enlargement of the interlayer space determined using X-ray diffraction. This variation is compared to an idealized specific surface area obtained from TEM and X-ray measurements in agreement with crystallographic models. All these results are also compared with those obtained previously for a natural montmorillonite. A simple view of swelling is proposed

    Suppression of cross-hatched polariton disorder in GaAs/AlAs microcavities by strain compensation

    Get PDF
    Zinc-blende semiconductor heterostructures grown in the [001] direction with a small lattice mismatch accommodate stress by developing a cross-hatch dislocation pattern. In GaAs based planar microcavitiesgrown by molecular beam epitaxy, this pattern creates a potential landscape for exciton-polaritons, causing scattering and localization. We report here on suppressing the cross-hatch by introducing strain-compensating AlP layers into the center of the low index AlAs layers of the distributed Bragg reflectors. We observe a reduction of the cross-hatch dislocation density by at least one order of magnitude for 1.1 nm thick AlP layers, which correspond to an effective AlAs0.985P0.015 low index layer. These compensated structures show a remaining polariton disorder potential in the 10 μeV range

    Molecular Mimicry of Human Cytochrome P450 by Hepatitis C Virus at the Level of Cytotoxic T Cell Recognition

    Get PDF
    Hepatitis C virus (HCV) is thought to be involved in the pathogenesis of autoimmune hepatitis (AIH) type 2, which is defined by the presence of type I antiliver kidney microsome autoantibodies directed mainly against cytochrome P450 (CYP)2D6 and by autoreactive liver infiltrating T cells. Virus-specific CD8+ cytotoxic T lymphocytes (CTLs) that recognize infected cells and contribute to viral clearance and tissue injury during HCV infection could be involved in the induction of AIH. To explore whether the antiviral cellular immunity may turn against self-antigens, we characterized the primary CTL response against an HLA-A*0201–restricted HCV-derived epitope, i.e., HCV core 178–187, which shows sequence homology with human CYP2A6 and CYP2A7 8–17. To determine the relevance of these homologies for the pathogenesis of HCV-associated AIH, we used synthetic peptides to induce primary CTL responses in peripheral blood mononuclear cells of healthy blood donors and patients with chronic HCV infection. We found that the naive CTL repertoire of both groups contains cross-reactive CTLs inducible by the HCV peptide recognizing both CYP2A6 and CYP2A7 peptides as well as endogenously processed CYP2A6 protein. Importantly, we failed to induce CTLs with the CYP-derived peptides that showed a lower capacity to form stable complexes with the HLA-A2 molecule. These findings demonstrate the potential of HCV to induce autoreactive CD8+ CTLs by molecular mimicry, possibly contributing to virus-associated autoimmunity

    Growth Based Morphogenesis of Vertebrate Limb Bud

    Get PDF
    Many genes and their regulatory relationships are involved in developmental phenomena. However, by chemical information alone, we cannot fully understand changing organ morphologies through tissue growth because deformation and growth of the organ are essentially mechanical processes. Here, we develop a mathematical model to describe the change of organ morphologies through cell proliferation. Our basic idea is that the proper specification of localized volume source (e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical gradients. We call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism works if the tissue is elastic for small deformation and plastic for large deformation. To illustrate our concept, we study the development of vertebrate limb buds, in which a limb bud protrudes from a flat lateral plate and extends distally in a self-organized manner. We show how the proportion of limb bud shape depends on different parameters and also show the conditions needed for normal morphogenesis, which can explain abnormal morphology of some mutants. We believe that the ideas shown in the present paper are useful for the morphogenesis of other organs

    Clinical applications of intra-cardiac four-dimensional flow cardiovascular magnetic resonance: A systematic review

    Get PDF
    Background: Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) is an emerging non-invasive imaging technology used to visualise and quantify intra-cardiac blood flow. The aim of this systematic review is to assess the literature on the current clinical applications of intra-cardiac 4D flow CMR. Methods: A systematic review was conducted to evaluate the literature on the intra-cardiac clinical applications of 4D flow CMR. Structured searches were carried out on Medline, EMBASE and the Cochrane Library in October 2016. A modified Critical Skills Appraisal Programme (CASP) tool was used to objectively assess and score the included studies. Studies were categorised as ‘highly clinically applicable’ for scores of 67–100%, ‘potentially clinically applicable’ for 34–66% and ‘less clinically applicable’ for 0–33%. Results: Of the 1608 articles screened, 44 studies met eligibility for systematic review. The included literature consisted of 22 (50%) mechanistic studies, 18 (40.9%) pilot studies and 4 (9.1%) diagnostic studies. Based on the modified CASP tool, 27 (62%) studies were ‘highly clinically applicable’, 9 (20%) were ‘potentially clinically applicable’ and 8 (18%) were ‘less clinically applicable’. Conclusions: There are many proposed methods for using 4D flow CMR to quantify intra-cardiac flow. The evidence base is mainly mechanistic, featuring single-centred designs. Larger, multi-centre studies are required to validate the proposed techniques and investigate the clinical advantages that 4D flow CMR offers over standard practices

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X
    corecore