3,281 research outputs found

    The Weak Hyperedge Tenacity of the Hypercycles

    Get PDF
    Graphs play an important role in our daily life. For example, the urban transport network can be represented by a graph, as the intersections are the vertices and the streets are the edges of the graph. Suppose that some edges of the graph are removed, the question arises how damaged the graph is. There are some criteria for measuring the vulnerability of graph; the tenacity is the best criteria for measuring it. Since the hypergraph generalize the standard graph by defining any edge between multiple vertices instead of only two vertices, the above question is about the hypergraph. When a hyperedge is omitted from hypergraph, we have two kinds of deletion: strong deletion and weak deletion. Weak hyperedge deletion just deletes the connection between the vertices in the hyperedge and the vertices became in the hypergraph. In this paper, we obtain the tenacity of hypercycles by weak hyperedge deletion

    Quantification of temporal fault trees based on fuzzy set theory

    Get PDF
    © Springer International Publishing Switzerland 2014. Fault tree analysis (FTA) has been modified in different ways to make it capable of performing quantitative and qualitative safety analysis with temporal gates, thereby overcoming its limitation in capturing sequential failure behaviour. However, for many systems, it is often very difficult to have exact failure rates of components due to increased complexity of systems, scarcity of necessary statistical data etc. To overcome this problem, this paper presents a methodology based on fuzzy set theory to quantify temporal fault trees. This makes the imprecision in available failure data more explicit and helps to obtain a range of most probable values for the top event probability

    Identification of two Ophiuroidea species in intertidal zone of Chabahar bay along Oman Sea coast

    Get PDF
    Among the echinoderms, the Ophiuroidea comprise the most diverse class with more than 2,000 species. They occur in nearly any marine habitat, ranging from the poles to the equator and are distributed from the tidal zone down to several thousand meters of depths. Often, their similar morphology makes their species identification difficult. The present study was conducted in order to identify and evaluate the species-spectra of ophiuroids in the Chabahar Bay. Samples were collected from the intertidal zone of Tis port in the west of Chabahar in October 2013, where coarse sediments and pebbles dominate. The samples were examined in the laboratory based on several factors including dorsal and ventral disc and arms. Two representatives of the family Ophiothrichidae were identified: Ophiothrix savgnyi and Macrophiothrix elongata

    A mid-infrared survey of the inner 2 × 1.5 degrees of the Galaxy with Spitzer/IRAC

    Get PDF
    We present a survey of Spitzer Space Telescope/IRAC observations of the central 2 × 1.5 degrees (265 × 200 pc) of the Galaxy at 3-8 μm. These data represent the highest spatial resolution and sensitivity large-scale map made to date of the Galactic Center (GC) at mid-infrared wavelengths. The IRAC data provide a census of the optically obscured stellar sources as well as a detailed map of the highly filamentary structure in the interstellar medium. The diffuse emission is dominated by PAH emission from small grains in star-forming regions. Dark clouds displaying a large variety of sizes and morphologies are imaged, many of which remain opaque at IRAC wavelengths. Using a multiwavelength comparison, we determine which objects are likely to be in the foreground and which are located at the GC. We find no counterparts at IRAC wavelengths to the unique system of linear, nonthermal radio filaments present at the GC

    Flaring Activity of Sgr A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma

    Full text link
    We have carried out Very Large Array (VLA) continuum observations to study the variability of Sgr A* at 43 GHz (λ\lambda=7mm) and 22 GHz (λ\lambda=13mm). A low level of flare activity has been detected with a duration of \sim 2 hours at these frequencies, showing the peak flare emission at 43 GHz leading the 22 GHz peak flare by 20\sim20 to 40 minutes. The overall characteristics of the flare emission are interpreted in terms of the plasmon model of Van der Laan (1966) by considering the ejection and adiabatically expansion of a uniform, spherical plasma blob due to flare activity. The observed peak of the flare emission with a spectral index να\nu^{-\alpha} of α\alpha=1.6 is consistent with the prediction that the peak emission shifts toward lower frequencies in an adiabatically-expanding self-absorbed source. We present the expected synchrotron light curves for an expanding blob as well as the peak frequency emission as a function of the energy spectral index constrained by the available flaring measurements in near-IR, sub-millimeter, millimeter and radio wavelengths. We note that the blob model is consistent with the available measurements, however, we can not rule out the jet of Sgr A*. If expanding material leaves the gravitational potential of Sgr A*, the total mass-loss rate of nonthermal and thermal particles is estimated to be 2×108\le 2\times10^{-8} M_\odot yr1^{-1}. We discuss the implication of the mass-loss rate since this value matches closely with the estimated accretion rate based on polarization measurements.Comment: Revised with new Figures 1 and 2, 17 pages, 4 figures, ApJ (in press

    Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11

    Full text link
    We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with milli-arcsecond spatial resolution indicates the first direct evidence that hourly time scale flares are localized within the inner 30×\times70 Schwarzschild radii of Sgr A*. We also show several cross correlation plots between near-IR, millimeter and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to three hours. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission being optically thick initially followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press

    A framework for intracranial saccular aneurysm detection and quantification using morphological analysis of cerebral angiograms

    Get PDF
    Reliable early prediction of aneurysm rupture can greatly help neurosurgeons to treat aneurysms at the right time, thus saving lives as well as providing significant cost reduction. Most of the research efforts in this respect involve statistical analysis of collected data or simulation of hemodynamic factors to predict the risk of aneurysmal rupture. Whereas, morphological analysis of cerebral angiogram images for locating and estimating unruptured aneurysms is rarely considered. Since digital subtraction angiography (DSA) is regarded as a standard test by the American Stroke Association and American College of Radiology for identification of aneurysm, this paper aims to perform morphological analysis of DSA to accurately detect saccular aneurysms, precisely determine their sizes, and estimate the probability of their ruptures. The proposed diagnostic framework, intracranial saccular aneurysm detection and quantification, first extracts cerebrovascular structures by denoising angiogram images and delineates regions of interest (ROIs) by using watershed segmentation and distance transformation. Then, it identifies saccular aneurysms among segmented ROIs using multilayer perceptron neural network trained upon robust Haralick texture features, and finally quantifies aneurysm rupture by geometrical analysis of identified aneurysmic ROI. De-identified data set of 59 angiograms is used to evaluate the performance of algorithms for aneurysm detection and risk of rupture quantification. The proposed framework achieves high accuracy of 98% and 86% for aneurysm classification and quantification, respectively

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap

    Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures

    Get PDF
    This paper explores the combinatorial aspects of symmetric and antisymmetric forms represented in tensor algebra. The development of geometric perspective gained from tensor algebra has resulted in the discovery of a novel projection operator for the Chow form of a curve in P3 with applications to computer vision

    Representing uncertainty regarding satisfaction degrees using possibility distributions

    No full text
    Evaluating flexible criteria on data leads to degrees of satisfaction. If a datum is uncertain, it can be uncertain to which degree it satisfies the criterion. This uncertainty can be modelled using a possibility distribution over the domain of possible degrees of satisfaction. In this work, we discuss the meaningfulness thereof by looking at the semantics of such a representation of the uncertainty. More specifically, it is shown that defuzzification of such a representation, towards usability in (multi-criteria) decision support systems, corresponds to expressing a clear attitude towards uncertainty (optimistic, pessimistic, cautious, etc.
    corecore