224 research outputs found

    A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes

    Get PDF
    We present evidence that the WASP-14 exoplanetary system has misaligned orbital and stellar-rotational axes, with an angle lambda = 33.1 +/- 7.4 deg between their sky projections. The evidence is based on spectroscopic observations of the Rossiter-McLaughlin effect as well as new photometric observations. WASP-14 is now the third system known to have a significant spin-orbit misalignment, and all three systems have "super-Jupiter" planets (M_P > 3 Mjup) and eccentric orbits. This finding suggests that the migration and subsequent orbital evolution of massive, eccentric exoplanets is somehow different from that of less massive close-in Jupiters, the majority of which have well-aligned orbits.Comment: 8 pages, 5 figures, 3 tables, PASP accepte

    Long-Term Transit Timing Monitoring and Refined Light Curve Parameters of HAT-P-13b

    Get PDF
    We present 10 new transit light curves of the transiting hot Jupiter HAT-P-13b, obtained during two observational seasons by three different telescopes. When combined with 12 previously published light curves, we have a sample consisting of 22 transit light curves, spanning 1,041 days across four observational seasons. We use this sample to examine the recently observed large-amplitude transit timing variations (P\'al et al. 2011), and give refined system parameters. We find that the transit times are consistent with a linear ephemeris, with the exception of a single transit time, from UT 2009 Nov 5, for which the measured mid transit time significantly deviates from our linear ephemeris. The nature of this deviation is not clear, and the rest of the data does not show any significant transit timing variation.Comment: accepted to AJ on 2011-07-1

    The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Get PDF
    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass planets on circular orbits.Comment: ApJ, in press [13 pg

    NLTT 41135: a field M-dwarf + brown dwarf eclipsing binary in a triple system, discovered by the MEarth observatory

    Get PDF
    We report the discovery of an eclipsing companion to NLTT 41135, a nearby M5 dwarf that was already known to have a wider, slightly more massive common proper motion companion, NLTT 41136, at 2.4 arcsec separation. Analysis of combined-light and radial velocity curves of the system indicates that NLTT 41135B is a 31-34 +/- 3 MJup brown dwarf (where the range depends on the unknown metallicity of the host star) on a circular orbit. The visual M-dwarf pair appears to be physically bound, so the system forms a hierarchical triple, with masses approximately in the ratio 8:6:1. The eclipses are grazing, preventing an unambiguous measurement of the secondary radius, but follow-up observations of the secondary eclipse (e.g. with the James Webb Space Telescope) could permit measurements of the surface brightness ratio between the two objects, and thus place constraints on models of brown dwarfs.Comment: 15 pages, 6 figures, 10 tables, emulateapj format. Accepted for publication in Ap

    TERMS Photometry of Known Transiting Exoplanets

    Get PDF
    The Transit Ephemeris Refinement and Monitoring Survey (TERMS) conducts radial velocity and photometric monitoring of known exoplanets in order to refine planetary orbits and predictions of possible transit times. This effort is primarily directed towards planets not known to transit, but a small sample of our targets consist of known transiting systems. Here we present precision photometry for 6 WASP planets acquired during their transit windows. We perform a Markov Chain Monte Carlo (MCMC) analysis for each planet and combine these data with previous measurements to redetermine the period and ephemerides for these planets. These observations provide recent mid-transit times which are useful for scheduling future observations. Our results improve the ephemerides of WASP-4b, WASP-5b and WASP-6b and reduce the uncertainties on the mid-transit time for WASP-29b. We also confirm the orbital, stellar and planetary parameters of all 6 systems.Comment: 12 pages; 6 figures; 9 tables; accepted for publication in AJ; two references updated and minor improvements made to match the version to be publishe

    LHS6343C: A Transiting Field Brown Dwarf Discovered by the Kepler Mission

    Get PDF
    We report the discovery of a brown dwarf that transits one member of the M+M binary system LHS6343AB every 12.71 days. The transits were discovered using photometric data from the Kelper public data release. The LHS6343 stellar system was previously identified as a single high-proper-motion M dwarf. We use high-contrast imaging to resolve the system into two low-mass stars with masses 0.45 Msun and 0.36 Msun, respectively, and a projected separation of 55 arcsec. High-resolution spectroscopy shows that the more massive component undergoes Doppler variations consistent with Keplerian motion, with a period equal to the transit period and an amplitude consistent with a companion mass of M_C = 62.8 +/- 2.3 Mjup. Based on an analysis of the Kepler light curve we estimate the radius of the companion to be R_C = 0.832 +/- 0.021 Rjup, which is consistent with theoretical predictions of the radius of a > 1 Gyr brown dwarf.Comment: Our previous analysis neglected the dependence of the scaled semimajor axis, a/R, on the transit depth. By not correcting a/R for the third-light contamination, we overestimated the mass of Star A, which led to an overestimate the mass and radius of the LHS6343

    Characterizing the Cool KOIs II. The M Dwarf KOI-254 and its Hot Jupiter

    Full text link
    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging and near infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J-K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of Mp = 0.505 Mjup, radius Rp = 0.96 Rjup and semimajor axis a = 0.03 AU, based on our measured stellar mass Mstar = 0.59 Msun and radius Rstar = 0.55 Rsun. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets.Comment: AJ accepted (in press

    Affectus Hispaniae en la historiografía del Alto Imperio

    Get PDF
    This paper analyses texts written by Greek and Latin High Empire historians dealing with Hispania. Some of the authors have a very positive view (Florus, Iustinus, Appian) while others are clearly negative (Veleius Paterculus, Valerius Maximus) though most of them show little interest, indifference or variety of opinions. When there is interest in the region or praise, it is because the author comes from Hispania or he is trying to please an emperor born in Hispania, but it could also be due to a universal conception of history revealing a critical attitude towards Roman imperialism, as in Appian. The praise found in Iustinus’s epitome should be attributed to the author of the epitome rather than to Pompeius Trogus. This can be taken as evidence for situating Iustinus’s life and work in the 2nd century A.D. Loathing of Hispania seems to have its origins in conservative, ‘optimate’ nationalist circles, who perceive the province as the ‘popular’ region that acclaimed and welcomed ‘seditious’ individuals such as Tiberius Gracchus and Sertorius.Se estudian en este trabajo los textos de historiadores del Alto Imperio, latinos y griegos, que tratan sobre Hispania. En algunos autores encontramos una visión muy positiva (Floro, Justino, Apiano) y en otros claramente negativa (Veleyo Patérculo, Valerio Máximo), aunque en la mayoría de los casos hay escasa atención, indiferencia o diversidad de opiniones. El interés por la región y los elogios pueden estar motivados por el origen hispánico del autor o su voluntad de agradar a algún emperador oriundo de Hispania, pero también por una concepción universal de la historia que denota en ocasiones una posición crítica con el imperialismo romano, como es el caso de Apiano. La alabanza que hallamos en el epítome de Justino creemos que debe atribuirse más al epitomador que a Pompeyo Trogo, lo que apoyaría una datación temprana de la vida y la obra de Justino (s. II d.C.). La aversión hacia Hispania parece haber surgido en medios conservadores, “optimates” nacionalistas, que ven la provincia como el territorio “popular”, que encumbró y acogió a “sediciosos” como Tiberio Graco y Sertorio

    The TESS-Keck Survey II: An Ultra-Short Period Rocky Planet and its Siblings Transiting the Galactic Thick-Disk Star TOI-561

    Full text link
    We report the discovery of TOI-561, a multi-planet system in the galactic thick disk that contains a rocky, ultra-short period planet (USP). This bright (V=10.2V=10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P=0.44 days, Rb=1.45±0.11RR_b = 1.45\pm0.11\,R_\oplus), c (TOI-561.01, P=10.8 days, Rc=2.90±0.13RR_c=2.90\pm0.13\,R_\oplus), and d (TOI-561.03, P=16.3 days, Rd=2.32±0.16RR_d=2.32\pm0.16\,R_\oplus). The star is chemically ([Fe/H]=0.41±0.05=-0.41\pm0.05, [α\alpha/H]=+0.23±0.05=+0.23\pm0.05) and kinematically consistent with the galactic thick disk population, making TOI-561 one of the oldest (10±310\pm3\,Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2±0.8M3.2\pm0.8\,M_\oplus and 5.51.6+2.05.5^{+2.0}_{-1.6}\,g\,cm3^{-3}, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0±2.3M7.0\pm2.3\,M_\oplus and 1.6±0.61.6\pm0.6\,g\,cm3^{-3}, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.Comment: Accepted at The Astronomical Journal; 25 pages, 10 figure

    Migration and Evolution of giant ExoPlanets (MEEP) I: Nine Newly Confirmed Hot Jupiters from the TESS Mission

    Full text link
    Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery, the mysteries surrounding their origins remain. Here, we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA's TESS mission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets (MEEP) survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting Gaia GG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55 Jupiter masses (MJ_{\rm{J}}) << MP_{\rm{P}} << 3.88 MJ_{\rm{J}}) and sizes (0.967 Jupiter radii (RJ_{\rm{J}}) << RP_{\rm{P}} << 1.438 RJ_{\rm{J}}) and orbit stars that range in temperature from 5360 K << Teff << 6860 K with Gaia GG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b (e=0.2590.036+0.033e = 0.259^{+0.033}_{-0.036}) and TOI-5301 b (e=0.330.10+0.11e = 0.33^{+0.11}_{-0.10}). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.Comment: 35 pages, 7 tables, and 14 figures. Submitted to AAS Journals on 2023 Dec 2
    corecore