233 research outputs found

    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China

    Get PDF
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd

    Integrating Structural and Non-structural Flood Management Measures for Greater Effectiveness in Flood Loss Reduction in the Kelantan River Basin, Malaysia

    Get PDF
    The state of Kelantan in Malaysia is a flood-prone state exposed to seasonal Monsoon rains that bring seasonal floods resulting in significantly losses. Flood management in the state is modelled after the country’s predominant government-centric top-down approach focused on flood-control technologies via structural measures such as multi-purpose dams, levees, embankments, tidal gates, diversion channels and others. These structural measures do not engage the public who fail to understand the measures leading to lack of confidence, misunderstanding and mistrust. This results in ineffectiveness of the measures leading to greater flood losses. In contrast, local communities are familiar with non-structural measures which they have long used to adapt to floods. These measures are also relatively simple, cost-effective and easily implementable over a short period of time. Both measures, however, must engage the public/victims in all phases of the flood disaster cycle. Balancing both types of flood management measures is the key to more effective management. A combination of structural and non-structural measures is the way forward for Kelantan State as it ensures that government structural measures are effectively supported by public-engaged non-structural measures

    Recurrent governance challenges in the implementation and alignment of flood risk management strategies: a review

    Get PDF
    In Europe increasing flood risks challenge societies to diversify their Flood Risk Management Strategies (FRMSs). Such a diversification implies that actors not only focus on flood defence, but also and simultaneously on flood risk prevention, mitigation, preparation and recovery. There is much literature on the implementation of specific strategies and measures as well as on flood risk governance more generally. What is lacking, though, is a clear overview of the complex set of governance challenges which may result from a diversification and alignment of FRM strategies. This paper aims to address this knowledge gap. It elaborates on potential processes and mechanisms for coordinating the activities and capacities of actors that are involved on different levels and in different sectors of flood risk governance, both concerning the implementation of individual strategies and the coordination of the overall set of strategies. It identifies eight overall coordination mechanisms that have proven to be useful in this respect

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Frequency of extreme Sahelian storms tripled since 1982 in satellite observations

    Get PDF
    The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms—mesoscale convective systems (MCSs)—poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in ‘extreme’ daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models

    Appropriate model use for predicting elevations and inundation extent for extreme flood events

    Get PDF
    Flood risk assessment is generally studied using flood simulation models; however, flood risk managers often simplify the computational process; this is called a “simplification strategy”. This study investigates the appropriateness of the “simplification strategy” when used as a flood risk assessment tool for areas prone to flash flooding. The 2004 Boscastle, UK, flash flood was selected as a case study. Three different model structures were considered in this study, including: (1) a shock-capturing model, (2) a regular ADI-type flood model and (3) a diffusion wave model, i.e. a zero-inertia approach. The key findings from this paper strongly suggest that applying the “simplification strategy” is only appropriate for flood simulations with a mild slope and over relatively smooth terrains, whereas in areas susceptible to flash flooding (i.e. steep catchments), following this strategy can lead to significantly erroneous predictions of the main parameters—particularly the peak water levels and the inundation extent. For flood risk assessment of urban areas, where the emergence of flash flooding is possible, it is shown to be necessary to incorporate shock-capturing algorithms in the solution procedure, since these algorithms prevent the formation of spurious oscillations and provide a more realistic simulation of the flood levels

    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Get PDF
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI
    • 

    corecore