13 research outputs found

    Exposing Novel Quark and Gluon Effects in Nuclei

    No full text
    International audienceThe fundamental theory of the strong interaction-quantum chromodynamics (QCD)—provides the foundational framework with which to describe and understand the key properties of atomic nuclei. A deep understanding of the explicit role of quarks and gluons in nuclei remains elusive however, as these effects have thus far been well-disguised by confinement effects in QCD which are encapsulated by a successful description in terms of effective hadronic degrees of freedom. The observation of the EMC effect has provided an enduring indication for explicit QCD effects in nuclei, and points to the medium modification of the bound protons and neutrons in the nuclear medium. Understanding the EMC effect is a major challenge for modern nuclear physics, and several key questions remain, such as understanding its flavor, spin, and momentum dependence. This manuscript provides a contemporary snapshot of our understanding of the role of QCD in nuclei and outlines possible pathways in experiment and theory that will help deepen our understanding of nuclei in the context of QCD

    Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-Year Analysis of Susceptibilities of Candida Species and Other Yeast Species to Fluconazole and Voriconazole Determined by CLSI Standardized Disk Diffusion Testing▿

    Get PDF
    Fluconazole in vitro susceptibility test results for 205,329 yeasts were collected from 134 study sites in 40 countries from June 1997 through December 2005. Data were collected for 147,776 yeast isolates tested with voriconazole from 2001 through 2005. All investigators tested clinical yeast isolates by the CLSI M44-A disk diffusion method. Test plates were automatically read and results recorded with a BIOMIC image analysis system. Species, drug, zone diameter, susceptibility category, and quality control results were collected quarterly. Duplicate (same patient, same species, and same susceptible-resistant biotype profile during any 7-day period) and uncontrolled test results were not analyzed. Overall, 90.1% of all Candida isolates tested were susceptible (S) to fluconazole; however, 10 of the 22 species identified exhibited decreased susceptibility (<75% S) on the order of that seen with the resistant (R) species C. glabrata and C. krusei. Among 137,487 isolates of Candida spp. tested against voriconazole, 94.8% were S and 3.1% were R. Less than 30% of fluconazole-resistant isolates of C. albicans, C. glabrata, C. tropicalis, and C. rugosa remained S to voriconazole. The non-Candida yeasts (8,821 isolates) were generally less susceptible to fluconazole than Candida spp. but, aside from Rhodotorula spp., remained susceptible to voriconazole. This survey demonstrates the broad spectrum of these azoles against the most common opportunistic yeast pathogens but identifies several less common yeast species with decreased susceptibility to antifungal agents. These organisms may pose a future threat to optimal antifungal therapy and emphasize the importance of prompt and accurate species identification

    Candida rugosa, an Emerging Fungal Pathogen with Resistance to Azoles: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program

    Get PDF
    Candida rugosa is a fungus that appears to be emerging as a cause of infection in some geographic regions. We utilized the extensive database of the ARTEMIS DISK Antifungal Surveillance Program to describe the geographic and temporal trends in the isolation of C. rugosa from clinical specimens and the in vitro susceptibilities of 452 isolates to fluconazole and voriconazole. C. rugosa accounted for 0.4% of 134,715 isolates of Candida, and the frequency of isolation increased from 0.03% to 0.4% over the 6.5-year study period (1997 to 2003). C. rugosa was most common in the Latin American region (2.7% versus 0.1 to 0.4%). Decreased susceptibility to fluconazole (40.5% susceptible) was observed in all geographic regions; however, isolates from Europe and North America were much more susceptible (97 to 100%) to voriconazole than those from other geographic regions (55.8 to 58.8%). C. rugosa was most often isolated from blood and urine in patients hospitalized at the Medical and Surgical inpatient services. Notably, bloodstream isolates were the least susceptible to both fluconazole and voriconazole. C. rugosa should be considered, along with the established pathogens Candida krusei and Candida glabrata, as a species of Candida with reduced susceptibility to the azole antifungal agents

    Cell Distribution and Segregation Phenomena During Blood Flow

    No full text
    corecore