274 research outputs found
Duration Analysis of Interest Rate Spells : Cross-National Study of Interest Rate Policy
A duration analysis is adopted in this study to investigate the determinants of the "interest rate spells" across ten countries (or area) . Both parametric and nonparametric methods are employed for the analysis. It is found that the length of "interest rate spells" is affected by both the rate of inflation and the rate of economic growth. In contrast, the influence of exchange and unemployment rates proved to be insignificant and the lagged interest rate is significant only for Denmark. The empirical results support the contention that central banks usually design their interest rate policies based on the Taylor Rule.Duration Analysis, Taylor Rule, Parametric Models, Nonparametric Models
A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system
A bilayer electron system in a strong magnetic field at low temperatures,
with total Landau level filling factor nu =1, can enter a strongly coupled
phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In
this phase there is a large quantized Hall drag resistivity between the layers.
We consider here structures where regions of (111) phase are separated by
regions in which one of the layers is depleted by means of a gate, and various
of the regions are connected together by wired contacts. We note that with
suitable designs, one can create a DC step-up transformer where the output
voltage is larger than the input, and we show how to analyze the current flows
and voltages in such devices
Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise
We discuss control techniques for noisy self-sustained oscillators with a
focus on reliability, stability of the response to noisy driving, and
oscillation coherence understood in the sense of constancy of oscillation
frequency. For any kind of linear feedback control--single and multiple delay
feedback, linear frequency filter, etc.--the phase diffusion constant,
quantifying coherence, and the Lyapunov exponent, quantifying reliability, can
be efficiently controlled but their ratio remains constant. Thus, an
"uncertainty principle" can be formulated: the loss of reliability occurs when
coherence is enhanced and, vice versa, coherence is weakened when reliability
is enhanced. Treatment of this principle for ensembles of oscillators
synchronized by common noise or global coupling reveals a substantial
difference between the cases of slightly non-identical oscillators and
identical ones with intrinsic noise.Comment: 10 pages, 5 figure
Spectral selectivity of unbalanced magnetron sputtered TiN, TiAlN and TiAlSiN coatings: XRD, SEM and optical analyses
The photothermal industries require high quality and highly efficient solar selective coatings for the surface of solar energy converters. An efficient selective surface has high absorptance in the visible range and low emittance in the infrared~far-infrared range of the solar spectrum. The low emittance (or high reflectance) of such coatings would significantly reduce energy loss through infrared radiation
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
A generalized frequency detuning method for multidegree-of-freedom oscillators with nonlinear stiffness
In this paper, we derive a frequency detuning method for multi-degree-of-freedom oscillators with nonlinear stiffness. This approach includes a matrix of detuning parameters, which are used to model the amplitude dependent variation in resonant frequencies for the system. As a result, we compare three different approximations for modeling the affect of the nonlinear stiffness on the linearized frequency of the system. In each case, the response of the primary resonances can be captured with the same level of accuracy. However, harmonic and subharmonic responses away from the primary response are captured with significant differences in accuracy. The detuning analysis is carried out using a normal form technique, and the analytical results are compared with numerical simulations of the response. Two examples are considered, the second of which is a two degree-of-freedom oscillator with cubic stiffnesses
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
- âŠ