2,004 research outputs found
Circumstellar discs: What will be next?
This prospective chapter gives our view on the evolution of the study of
circumstellar discs within the next 20 years from both observational and
theoretical sides. We first present the expected improvements in our knowledge
of protoplanetary discs as for their masses, sizes, chemistry, the presence of
planets as well as the evolutionary processes shaping these discs. We then
explore the older debris disc stage and explain what will be learnt concerning
their birth, the intrinsic links between these discs and planets, the hot dust
and the gas detected around main sequence stars as well as discs around white
dwarfs.Comment: invited review; comments welcome (32 pages
Physiological models of body composition and human obesity
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Recommended from our members
Adipose Tissue Quantification by Imaging Methods: A Proposed Classification
Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes
Exocomets from a Solar System Perspective
Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred
from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently,
they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris
disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the
potential to give us information about early stage formation and evolution conditions of extra solar systems. In the solar
system, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed,
providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential
compositional properties between solar system comets and exocomets to allow for the development of new observational
methods and techniques. The paper aims to highlight commonalities and to discuss differences which may aid the
communication between the involved research communities and perhaps also avoid misconceptions. The compositional
properties of solar system comets and exocomets are summarized before providing an observational comparison between
them. Exocomets likely vary in their composition depending on their formation environment like solar system comets do,
and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of solar system comets. Observations of gas around main sequence stars, spectroscopic observations of “polluted” white
dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show
compositional similarities with solar system comets. The recent interstellar visitor 2I/Borisov showed gas, dust and
nuclear properties similar to that of solar system comets. This raises the tantalising prospect that observations of
interstellar comets may help bridge the fields of exocomet and solar system comets
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) =
200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity
(-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these
kinematics and as a function of collision centrality (related to impact
parameter for the R_dAu collision). We find that the modification is largest
for collisions with small impact parameters, and observe a suppression
(R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we
observe a suppression for p_T1) for p_T>2
GeV/c. The observed enhancement at negative rapidity has implications for the
observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm
Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) =
200 GeV recorded by the PHENIX experiment and compare with yields in p+p
collisions at the same energy per nucleon-nucleon collision. The measurements
cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high
statistical precision and are compared with two theoretical models: one with
nuclear shadowing combined with final state breakup and one with coherent gluon
saturation effects. To remove model dependent systematic uncertainties we also
compare the data to a simple geometric model. We find that calculations where
the nuclear modification is linear or exponential in the density weighted
longitudinal thickness are difficult to reconcile with the forward rapidity
data.Comment: 449 authors from 66 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS
The longitudinal polarisation transfer from muons to lambda and anti-lambda
hyperons, D_LL, has been studied in deep inelastic scattering off an
unpolarised isoscalar target at the COMPASS experiment at CERN. The spin
transfers to lambda and anti-lambda produced in the current fragmentation
region exhibit different behaviours as a function of x and xF . The measured x
and xF dependences of D^lambda_LL are compatible with zero, while
D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The
resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and
D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the
frame of recent model calculations.Comment: 13 pages, 7 figure
- …