164 research outputs found

    New Eruptive YSOs from SPICY and WISE

    Get PDF
    © Published under Creative Commons license CC BY-SA 4.0.This work presents four high-amplitude variable YSOs (≃3 mag at near-or mid-IR wavelengths) arising from the SPICY catalog. Three outbursts show a duration that is longer than 1 year, and are still ongoing. And additional YSO brightened over the last two epochs of NEOWISE observations and the duration of the outburst is thus unclear. Analysis of the spectra of the four sources confirms them as new members of the eruptive variable class. We find two YSOs that can be firmly classified as bona fide FUors and one object that falls in the V1647 Ori-like class. Given the uncertainty in the duration of its outburst, an additional YSO can only be classified as a candidate FUor. Continued monitoring and follow-up of these particular sources is important to better understand the accretion process of YSOs.Peer reviewe

    VIRAC: The VVV Infrared Astrometric Catalogue

    Get PDF
    © 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present VIRAC version 1, a near-infrared proper motion and parallax catalogue of the VISTA Variables in the Via Lactea (VVV) survey for 312 587 642 unique sources averaged across all overlapping pawprint and tile images covering 560 deg 2 of the bulge of the MilkyWay and southern disc. The catalogue includes 119 million high-quality proper motion measurements, of which 47 million have statistical uncertainties below 1 mas yr -1. In the 11 < K s < 14 magnitude range, the high-quality motions have a median uncertainty of 0.67 mas yr -1. The catalogue also includes 6935 sources with quality-controlled 5s parallaxes with a median uncertainty of 1.1 mas. The parallaxes show reasonable agreement with the Tycho- Gaia Astrometric Solution, though caution is advised for data with modest significance. The SQL data base housing the data is made available via the web. We give example applications for studies of Galactic structure, nearby objects (low-mass stars and brown dwarfs, subdwarfs, white dwarfs) and kinematic distance measurements of young stellar objects. Nearby objects discovered include LTT 7251 B, an L7 benchmark companion to a G dwarf with over 20 published elemental abundances, a bright L subdwarf, VVV 1256-6202, with extremely blue colours and nine new members of the 25 pc sample. We also demonstrate why this catalogue remains useful in the era of Gaia. Future versions will be based on profile fitting photometry, use the Gaia absolute reference frame and incorporate the longer time baseline of the VVV extended survey.Peer reviewedFinal Published versio

    Discovery of a mid-infrared protostellar outburst of exceptional amplitude

    Get PDF
    We report the discovery of a mid-infrared outburst in a young stellar object (YSO) with an amplitude close to 8 mag at λ ≈ 4.6 ÎŒm. WISEA J142238.82-611553.7 is one of 23 highly variable Wide-field Infrared Survey Explorer (WISE) sources discovered in a search of infrared dark clouds (IRDCs). It lies within the small IRDC G313.671-0.309 (d ≈ 2.6 kpc), seen by the Herschel/Hi-Gal survey as a compact massive cloud core that may have been measurably warmed by the event. Pre-outburst data from Spitzer in 2004 suggest it is a class I YSO, a view supported by observation of weak 2.12 ÎŒm H2 emission in an otherwise featureless red continuum spectrum in 2019 (6 mag below the peak in Ks). Spitzer, WISE, and VISTA Variables in the Via Lactea (VVV) data show that the outburst began by 2006 and has a duration >13 yr, with a fairly flat peak from 2010 to 2014. The low pre-outburst luminosity implies a low-mass progenitor. The outburst luminosity of a few × 102 L⊙ is consistent with an accretion rate M ≈ 10-4 M⊙yr-1, comparable to a classical FU Orionis event. The 4.6 ÎŒm peak in 2010 implies T = 800-1000 K and a disc radial location R ≈ 4.5 au for the emitting region. The colour evolution suggests subsequent progression outwards. The apparent absence of the hotter matter expected in thermal instability or MRI models may be due to complete obscuration of the innermost disc, e.g. by an edge-on disc view. Alternatively, disc fragmentation/infalling fragment models might more naturally explain a mid-infrared peak, though this is not yet clear. © 2020 The Author(s).We thank the referee for reading the paper and encouraging us to provide more detail in several places. This publication makes use of data products from the WISE satellite, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA). The work is based in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Minist?rio da Ci?ncia, Tecnologia e Inova??es (MCTI) do Brasil, the US National Science Foundation's National Optical-Infrared Astronomy Research Laboratory (NOIRLab), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU)

    The most variable VVV sources: eruptive protostars, dipping giants in the nuclear disc and others

    Get PDF
    We have performed a comprehensive search of a VISTA Variables in the Via Lactea (VVV) data base of 9.5 yr light curves for variable sources with ΔKs ≄ 4 mag, aiming to provide a large sample of high amplitude eruptive young stellar objects (YSOs) and detect unusual or new types of infrared variable source. We find 222 variable or transient sources in the Galactic bulge and disc, most of which are new discoveries. The sample mainly comprises novae, YSOs, microlensing events, Long Period Variable stars (LPVs), and a few rare or unclassified sources. Additionally, we report the discovery of a significant population of aperiodic late-type giant stars suffering deep extinction events, strongly clustered in the Nuclear Disc of the Milky Way. We suggest that these are metal-rich stars in which radiatively driven mass loss has been enhanced by super-solar metallicity. Among the YSOs, 32/40 appear to be undergoing episodic accretion. Long-lasting YSO eruptions have a typical rise time of ∌2 yr, somewhat slower than the 6–12 month time-scale seen in the few historical events observed on the rise. The outburst durations are usually at least 5 yr, somewhat longer than many lower amplitude VVV events detected previously. The light curves are diverse in nature, suggesting that multiple types of disc instability may occur. Eight long-duration extinction events are seen wherein the YSO dims for a year or more, attributable to inner disc structure. One binary YSO in NGC 6530 displays periodic extinction events (P=59 d) similar to KH 15D

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80∘80^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×10−51.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×10−32.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    • 

    corecore